Aklaypart.ru

Авто Журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Ядерный ракетный двигатель принцип работы

Двигателестроение

текст Владимир Тесленко , кандидат химических наук

Россия — абсолютный мировой монополист в разработке энергодвигательной установки с ядерным реактором мегаваттного класса.

Проект создания транспортно-энергетического модуля на основе ядерной энергодвигательной установки (ЯЭДУ) мегаваттного класса выполняется совместно предприятиями Росатома и Роскосмоса в соответствии с решением, принятым в 2009 году президентской комиссией по модернизации. Не имеющая аналогов энерготранспортная установка позволит создать качественно новую технику высокой энерговооруженности для изучения и освоения дальнего космоса. Новый проект предполагает использование ионных электрореактивных двигателей, в которых реактивная тяга создается за счет ускоренного электрическим полем потока ионов. При использовании космических ядерных энергоустановок можно приступить к решению таких задач, как полет на Марс, детальные исследования планет и их спутников, промышленное производство в космосе. Также можно будет заниматься очисткой околоземного космического пространства от космического мусора, бороться с астероидной опасностью, создавать на планетах автоматизированные базы.

Большими достоинствами проекта являются практически важные эксплуатационные характеристики — высокий ресурс (10 лет эксплуатации), значительный межремонтный интервал и продолжительное время работы на одном включении. Они не могут не впечатлять специалистов из других стран, в первую очередь США.

Тайный проект

ЯЭДУ содержит три главные устройства: 1) реакторную установку с рабочим телом и вспомогательными устройствами (теплообменник-рекуператор и турбогенератор-компрессор); 2) электроракетную двигательную установку; 3) холодильник-излучатель.

Проблема радиационной безопасности решается теневой защитой — реактор закрывают только с одной стороны, с той, где расположено оборудование и полезный груз. Излучение может свободно распространяться во все остальные стороны, там нет ничего, кроме космической пустоты. Так можно существенно сэкономить на весе защиты.

рис.01 Компоновка ЯЭДУ. Транспортно-энергетический модуль

Масса кг 20290
Габаритные размеры (рабочее положение), м 53,4-21,6-21,6
Электрическая мощность ЭБ, МВт 1,0
Удельный импульс ЭРД, км/с не менее 70,0
Мощность ЭРД, МВт не более 0,94
Суммарная тяга маршевых ЭРД, Н не менее 18,0
Ресурс, лет 10
Средство выделения РН «Ангара-А5»

    Назначение
  • межорбитальная буксировка полезной нагрузки
  • передача на полезную нагрузку энергии (до 225 кВт)

Главным конструктором реакторной установки и координатором работ от Росатома является НИКИЭТ — Научно-исследовательский и конструкторский институт энерготехники имени Н.А. Доллежаля.

С атомным реактором для космического применения нет принципиальных затруднений. В период с 1962 по 1993 год в нашей стране был накоплен богатый опыт производства аналогичных установок. Похожие работы велись и в США таб. 01 .

По состоянию на июль 2015 года в НИКИЭТ уже защищен технический проект активной зоны — ключевого элемента ядерного реактора. В конце года планируется защитить технический проект всей реакторной установки.

С физической точки зрения это компактный газоохлаждаемый реактор на быстрых нейтронах.

Сейчас в двух центрах — Институте реакторных материалов в городе Заречном Свердловской области и Научно-исследовательском институте атомных реакторов в Димитровграде — проходят испытания тепловыделяющих элементов (твэлов). Они разработаны в Физико-энергетическом институте им. А.И. Лейпунского (Обнинск), а изготовлены в прошлом году на Машиностроительном заводе в Электростали (ОАО «ТВЭЛ»).

Этому топливу придется работать при очень высоких температурах. В обычной ядерной топливной энергетике температуры на тысячу градусов ниже. Поэтому необходимо было выбрать такие материалы, которые смогут сдерживать негативные факторы, связанные с температурой, и в то же время позволят топливу выполнять его основную функцию — нагревать газовый теплоноситель, с помощью которого будет производиться электроэнергия.

В качестве топлива используется соединение (диоксид или карбонитрид) урана, но, поскольку конструкция должна быть очень компактной, уран имеет более высокое обогащение по изотопу 235, чем в твэлах на обычных (гражданских) атомных станциях, возможно, выше 20%. А оболочка их — монокристаллический сплав тугоплавких металлов на основе молибдена (разработка НПО «Луч» в Подольске).

Уникальность проекта в использовании специального теплоносителя — гелий-ксеноновой смеси. В установке обеспечивается высокий коэффициент полезного действия. Схема дана на рис. 02 .

рис. 02 Компоновка ядерной установки. 3D-модель РУ с карбонитридным топливом

Охлаждение газа в процессе работы ядерной установки совершенно необходимо. Как же сбрасывать тепло в открытом космосе?

На Земле для охлаждения электростанций используется либо вода, либо гигантские градирни. В космосе эти способы не доступны. Единственная возможность — охлаждение излучением. Нагретая поверхность в пустоте охлаждается, излучая электромагнитные волны в широком диапазоне, в том числе видимый свет.

Общая схема холодильника представлена на рис. 03-04 .

По состоянию на лето 2015 г. промежуточные результаты такие:

  • для экспериментального подтверждения принципа работы капельного холодильника-излучателя был проведен первый этап космического эксперимента «Капля-2» на российском сегменте Международной космической станции;
  • для теплообменных аппаратов выбрана, экспериментально обоснована и изготовлена моноблочная бескорпусная конструкция с использованием теплообменной матрицы из унифицированных штампованных пластин.

Рис. 03 Параметры холодильника ЯЭДУ

    Вариант компоновки ЯЭДУ в составе многоразового межорбитального буксира:
  • с панельным холодильником-излучателем
  • с капельным холодильником излучателем

Рис. 04

    Варианты размещения ЯЭДУ под обтекателем в транспортном положении:
  • с панельным холодильником-излучателем
  • с капельным холодильником излучателем

В 2010 году были сформулированы технические предложения по проекту. С этого года началось проектирование.

Известно, что с начала 1960-х годов в мире было разработано несколько типов электрореактивных двигателей: ионный, стационарный плазменный, двигатель с анодным слоем, импульсный плазменный двигатель, магнитоплазменный, магнитоплазмодинамический.

Исследовательский центр имени М.В. Келдыша (ранее РНИИ, НИИ-1, НИИТП) разработал и изготовил опытный образец ионного двигателя высокой мощности ИД-500. Его параметры такие: мощность 32-35 кВт, тяга 375-750 мН, удельный импульс 70000м/с, коэффициент полезного действия 0,75.

На данном этапе опытный образец ИД-500 имеет электроды ионно-оптической системы, выполненные из титана с диаметром перфорированной отверстиями зоны 500 мм, катод газоразрядной камеры, который обеспечивает ток разряда в диапазоне 20-70 А и катод-нейтрализатор, способный обеспечить нейтрализацию ионного пучка в диапазоне токов 2-9 А. На следующем этапе разработки двигатель будет оснащен электродами из углерод-углеродного композиционного материала и катодом с графитовым поджигным электродом.

Принцип действия ионного двигателя следующий. В газоразрядной камере с помощью анодов и катодного блока, расположенных в магнитном поле, создается разреженная плазма. Из нее эмиссионным электродом «вытягиваются» ионы рабочего тела (ксенона или другого вещества) и ускоряются в промежутке между ним и ускоряющим электродом.

По планам, к концу 2017 года будет осуществлена подготовка ядерной энергодвигательной установки для комплектации транспортно-энергетического модуля (перелетного межпланетного модуля). К концу 2018 года ЯЭДУ будет подготовлена к летно-конструкторским испытаниям. Финансирование проекта осуществляется за счет средств федерального бюджета. Смета на период 2010-2018 гг. составляет 7245 млн руб.

Проект создания транспортно-энергетического модуля на основе ядерной энергодвигательной установки мегаваттного класса вызвал нешуточные научно-технологические дискуссии в среде двух выликих кланов — атомного и космического. Но пока живы «проигравшие», подробности решено не выносить на публику.

Таб. 01 Сравнительные показатели результатов, полученных по программам разработок ядерных реактивных двигателей в СССР и в США в 1959-1989 гг.

Ядерные двигатели

Идея использовать ядерные двигатели в авиации и космонавтике возникла в 1950-х годах вскоре после создания технологии управляемой атомной реакции. Плюсом такого двигателя является длительное время работы на практически не расходуемом в полете компактном источнике топлива, что означает неограниченную дальность полета. Минусами были большой вес и габариты атомных реакторов того времени, сложность их перезарядки, необходимость обеспечения биологической защиты обслуживающего персонала. С начала 1950-х годов ученые СССР и США независимо друг от друга изучали возможность создания разных типов атомных двигателей:

  • ядерный прямоточный воздушно-реактивный двигатель (ЯПВРД): в нем поступающий через воздухозаборник воздух попадает в активную зону реактора, нагревается и выбрасывается через сопло, создавая нужную тягу;
  • ядерный турбореактивный двигатель: действует по похожей схеме, но воздух перед попаданием в реактор сжимается компрессором;
  • ядерный ракетный двигатель: тяга создается за счет нагрева реактором рабочего тела, водорода, аммиака, других газов или жидкостей, которые затем выбрасываются в сопло;
  • ядерный импульсный двигатель: реактивную тягу создают поочередные ядерные взрывы малой мощности;
  • электрореактивный двигатель: вырабатываемая реактором электроэнергия используется для нагрева рабочего тела до состояния плазмы.

Наиболее подходящими для крылатых ракет и самолетов являются прямоточный воздушно-реактивный или турбореактивный двигатель. В проектах крылатых ракет предпочтение традиционно отдавалось первому варианту.

РД-0410 — ядерный двигатель для дальнего космоса.

На сайте КБХА двигатель РД0410 после проведенных испытаний в земных условиях, мирно покоится в разделе перспективных разработок.

Популярный 7-минутный фильм для демонстрации принципов работы:

Из характеристик двигателя удельный импульс 910 с ( 8927 м/с ), современные и перспективные РД на химическом топливе явно не дотягивают до этого значения:

Американский реактор «NERVA» по плану должен был быть установлен на ракету «Сатурн V», однако спонсирование лунной программы было остановлено.

Параллельно велись работы и над созданием газофазных ЯРД.

Устройство и принцип действия ЯРД.

Ядерные ракетные двигатели бывают:

— газофазными, жидкофазными и твердофазными в зависимости от агрегатного состояния ядерного топлива.

Также они могут подразделяться на:

-жидкостные и импульсно-взрывные.

Жидкостные ядерные ракетные двигатели используют нагрев жидкого рабочего тела в нагревательной камере от ядерного реактора и вывод газа через сопло, а импульсно-взрывные основаны на создании ядерных взрывов малой мощности через равные промежутки времени.
ТЯРД может использовать различные виды термоядерных реакций в зависимости от вида применяемого топлива. В частности, на настоящее время принципиально осуществимы следующие типы реакций:

Реакция дейтерий + тритий (топливо D-T)

2 H + 3 H = 4 He + n + 17.6 МэВ

Такая реакция наиболее легко осуществима с точки зрения современных технологий, даёт значительный выход энергии, топливные компоненты относительно дёшевы. Недостаток её — весьма большой выход нежелательной (и бесполезной для прямого создания тяги) нейтронной радиации, уносящей большую часть выходной энергии реакции и, как следствие, резко снижающей КПД двигателя. Тритий радиоактивен, период его полураспада около 12 лет, то есть долговременное хранение трития невозможно. В то же время, возможно окружить дейтериево-тритиевый реактор оболочкой, содержащей литий: последний, в результате облучения нейтронным потоком, превращается в тритий, что приводит к замыканию топливного цикла, поскольку реактор работает в режиме размножителя (бридера). Таким образом, топливом для D-T-реактора фактически служат дейтерий и литий.

Реакция дейтерий + гелий-3

2 H + 3 He = 4 He + p + 18.3 МэВ

Условия её достижения значительно сложнее. Гелий-3, кроме того, редкий и чрезвычайно дорогой изотоп. В промышленных масштабах на настоящее время не производится. Кроме того, что энергетический выход этой реакции выше, чем у D-T-реакции, она имеет следующие дополнительные преимущества:

  • Сниженный нейтронный поток (реакцию можно отнести к «безнейтронным»),
  • Меньшая масса радиационной защиты,
  • Меньшая масса магнитных катушек реактора.

При реакции D- 3 He в форме нейтронов выделяется всего около 5% мощности (против 80% для D-T). Около 20% выделяется в форме рентгеновского излучения. Вся остальная энергия может быть непосредственно использована для создания реактивной тяги. Таким образом, реакция D- 3 He намного более перспективна для применения в реакторе ТЯРД.

Другие виды реакций

Реакции между ядрами дейтерия (D-D, монотопливо):

2 H + 2 H → 3 He + n + 3.3 МэВ,

2 H + 2 H →> 3 H + p + 4 МэВ.

Нейтронный выход в данном случае весьма значителен.
Возможны и некоторые другие типы реакций:

p + 6 Li → 4 He (1.7 MeV) + 3 He (2.3 MэВ)

3 He + 6 Li → 2 4 He + p + 16.9 MэВ

p + 11 B → 3 4 He + 8.7 MэВ


Рис.3 Строение жидкофазного ядерного двигателя

Рабочее тело, контактируя с ТВЭЛом, поглощает энергию и нагревается, увеличивается в объеме, после чего выходит через сопло двигателя под высоким давлением.
Принцип работы жидкофазного ЯРД и его устройство аналогично твердофазным, только топливо находится в жидком состоянии, что позволяет увеличить температуру, а значит и тягу.
Газофазные ЯРД работают на топливе в газообразном состоянии. Газообразное топливо может удерживаться в корпусе электрическим полем или же находится в герметичной прозрачной колбе – ядерной лампе. В первом случае возникает контакт рабочего тела с топливом, а также частичная утечка последнего, поэтому кроме основной массы топлива в двигателе должен быть предусмотрен его запас для периодического пополнения. В случае с ядерной лампой утечки не происходит, а топливо полностью изолировано от потока рабочего тела.

Читать еще:  Что дает облегченный маховик двигателя

Преимущество, заключающееся в высоком показателе удельного импульса ядерных ракетных двигателей по сравнению с химическими, очевидно.

Для твердофазных моделей величина удельного импульса составляет 8000-9000 м/с,

для жидкофазных – 14000 м/с, для газофазных – 30000 м/с.

2.2 Ядерный импульсный двигатель

В основе импульсного двигателя для космического аппарата лежит концепция атомного взрыва. Атомные заряды мощностью примерно в килотонну на этапе взлёта должны были взрываться со скоростью один заряд в секунду. Ударная волна — расширяющееся плазменное облако — должна была приниматься «толкателем» — мощным металлическим диском с теплозащитным покрытием, и, потом, отразившись от него, создать реактивную тягу. Импульс, принятый плитой толкателя, через элементы конструкции передавался кораблю. Затем, когда высота и скорость вырастут, частоту взрывов можно было уменьшить. При взлёте корабль должен был лететь строго вертикально, с целью минимизировать площадь радиоактивного загрязнения атмосферы.
В США были проведены несколько испытаний модели летательного аппарата с импульсным приводом (для взрывов использовалась обычная химическая взрывчатка). Получены положительные результаты о принципиальной возможности управляемого полёта аппарата с импульсным двигателем.
В США космические разработки с использованием импульсных ядерных ракетных двигателей осуществлялись с 1958 по 1965 год в рамках проекта «Орион» компанией «General Atomics») по заказу ВВС США. Программа развития проекта «Орион» была рассчитана на 12 лет. Однако приоритеты изменились, и в 1965 году проект был закрыт.
В СССР аналогичный проект разрабатывался в 1950—70-х годах. Основной проблемой была прочность экрана-толкателя, который не выдерживал огромных тепловых нагрузок от близких ядерных взрывов. Вместе с тем были предложены несколько технических решений, позволяющих разработать конструкцию плиты-толкателя с достаточным ресурсом. Проект не был завершён.
Реальных испытаний импульсного ЯРД с подрывом ядерных устройств не проводилось.

Настоящий момент.

Несмотря на простоту, вышеперечисленные РД, если их сравнивать со схемой

«атомная электростанция» — «электро-ракетный двигатель»,

недостаточно эффективены (кроме импульсного), т.к. скорость истечения рабочего тела больше чем на порядок отличается от ионных двигателей.

ГНЦ ФГУП «Центр Келдыша» с 2009 года разрабатывает космический транспортно-энергетический модуль (ТЭМ) на основе ядерной энергодвигательной установки (ЯЭДУ). В кооперации с предприятиями ГК «Роскосмос», «Росатом» и РАН ведутся работы по разработке, изготовлению и наземной отработке элементов, блоков и узлов ЯЭДУ мегаваттного класса и ТЭМ на ее основе.

Исследовательский центр имени М. В. Келдыша (ранее РНИИ, НИИ-1, НИИТП) разработал и изготовил опытный образец ионного двигателя высокой мощности ИД-500. Его параметры такие: мощность 32-35 кВт, тяга 375—750 мН, удельный импульс 70 000 м/с, коэффициент полезного действия 0,75.

Состояние работ по срокам реализации (википедия), причины штафных санкиций:

Таблица составлена на основе совместного директивного документа Роскосмоса и Росатома от 2010 года [97] с учётом Дополнения от 2016 года, выпущенного после сокращения объёмов бюджетных ассигнований [98] .

Номер
этапа
Наименование этапа, содержание работСрок
начала
выполнения
Срок
окончания
выполнения
СостояниеПримечания
1Разработка эскизного проекта реакторной установки.04.201012.2011
2Разработка эскизного проекта ЯЭДУ.04.201012.2012
3Разработка эскизного проекта ТЭМ.04.201012.2012Завершено в марте 2013 года [99]
4Разработка рабочей документации на реакторную установку.01.201212.2014
5Разработка рабочей документации на ЯЭДУ.01.201312.2014
6Разработка рабочей документации на ТЭМ.01.201312.2014
7Изготовление реакторной установки, систем и агрегатов, технологического оборудования.04.201012.2015На октябрь 2016 года этап не закрыт.
8Изготовление ЯЭДУ, систем ЯЭДУ, технологического оборудования.01.201112.2015На ноябрь 2016 года этап не закрыт.
9.6Изготовление ТЭМ, систем ТЭМ, технологического оборудования в части:

изготовления составных частей наземных прототипов энергоблока и электроракетной двигательной установки, разработки и изготовления составных частей конструкторско-технологических макетов отсека несущих ферм, модуля двигательных установок, модуля служебных систем и технологического оборудования для их изготовления и испытаний, разработки конструкторской документации на макеты отсека несущих ферм и модуля двигательных установок и технологическое оборудование для изготовления и испытания макетов.

Атомолёт: козырная карта холодной войны

В послевоенное время США и СССР одновременно начали разработку сверхсекретного проекта – самолёта на атомном двигателе. Новый атомолёт мог бы месяцами находиться в воздухе без дозаправки. Начинённый атомными бомбами, он становился идеальной машиной для убийства в случае мировой ядерной войны.

Борьба за расстояние

В послевоенное время мир захлестнула настоящая «атомомания». Атомной энергии находили всё новые и новые применения. Со дня на день ждали появления дешёвого электричества, автомобилей, поездов и прочего вида транспорта на атомной тяге. Существовал даже безумный проект ударить ядерными бомбами по полюсным ледовым шапкам, чтобы сделать климат планеты теплее.

Военная индустрия тоже возлагала большие надежды на атом. Изобретение атомной бомбы в корне меняло всю стратегию войны. Отныне можно было добиться победы, нанеся несколько точечных ударов по промышленным центрам противника. Оставалось дело за малым – добраться до них. Все важные стратегические объекты расположены далеко от границы в хорошо защищённом тылу, куда без дозаправки не мог долететь ни один бомбардировщик. И СССР, и США крайне нуждались в новом типе самолёта, способном преодолевать за раз десятки тысяч километров. Для осуществления этих задач был необходим совершенно новый тип двигателя. И здесь на помощь военным вновь пришёл атом.

Атомный двигатель по принципу действия намного проще реактивного. В случае последнего авиационное топливо сжигается за счёт кислорода, что вызывает быстрое нагревание воздуха. Такой нагретый воздух расширяется, и возникает сила, толкающая самолёт вперёд. Реактивный двигатель помогает достигать огромной скорости, но он потребляет и большое количество топлива, которое самолёт просто не в состоянии перевозить. Это либо существенно ограничивает дальность полёта, либо делает машину тихоходной, а значит, лёгкой мишенью для противника. Но атомному двигателю не нужны тонны топлива. Процесс сгорания кислорода заменяет тепло, получаемое от реактора. Проще говоря, для полёта атомолёту нужен лишь воздух да работающий реактор. Он может находиться в воздухе любое количество времени – месяцы, годы, не теряя при этом скорости. Это не только позволило бы атаковать дальние цели противника, но и давало возможность постоянно патрулировать воздушные границы и предупреждать внезапные атаки. Миру стало ясно – страна, которая первой построит атомолёт, победит в холодной войне.

Безопасность vs вес

За основу для атомолёта были взяты самолёты с высокой грузоподъёмностью, рассчитанные на дальнюю авиацию. Американцы выбрали модель самого мощного межконтинентального бомбардировщика, когда-либо создававшегося в США – Convair B-36, или «Миротворца». Он преодолевал расстояние до 13 тысяч километров. В СССР за основу взяли бомбардировщик-ракетоносец ТУ-95 и сверхзвуковой стратегический самолёт M-50 . Планировалось, что атомолёт будет иметь дальность полёта не менее 25 тыс. км при скорости 3000−3200 км/ч и высоте полёта 18−20 км.

Оставалось только создать атомный двигатель. Но, несмотря на простой принцип работы реактора, техническое решение оказалось неожиданно сложным. Было разработано два альтернативных варианта, каждый со своим ключевым недостатком.

Наиболее простым был так называемый «прямоточный двигатель». Холодный воздух поступал с одного конца, проходил сквозь маленькие отверстия внутри реактора, сильно нагревался и производил толкающую силу на другом конце. Всё бы хорошо, если бы не радиоактивное загрязнение воздуха при его проходе через реактор. То есть, атомолёт на прямоточном двигателе, каким бы ни была его защита от радиации, оставлял бы позади себя клубы радиоактивного воздуха. Это подвергало опасности не только экипаж, но и любую местность, которая пролегала вдоль пути такой машины.

Второй вариант был более экологичным. Предлагалось расположить реактор отдельно от двигателя. Он производил бы огромное количество энергии, которая передавалась бы двигательной системе за счёт горячих жидких металлов. Таким образом, воздух не проходил бы непосредственно сквозь реактор, и это решило бы проблемы выброса в атмосферу радиоактивных веществ. Но для этого было необходимо некое вещество, стоящее между воздухом и реактором, которое передавало бы тепло и отфильтровывало загрязнение. Для этой задачи идеально подходил свинец, но он утяжелял реактор настолько, что его было практически невозможно поднять в воздух, не говоря уже о достижении с ним сверхзвуковой скорости.

Атомный беспилотник

Итак, проблемы безопасности экипажа и вес реактора стали ключевыми для разработчиков атомолётов. Но им нашли решение. Конструкционное бюро Мясищева, которому было поручено сделать стратегический бомбардировщик с ядерной силовой установкой, подготовил проект M-60, в котором экипаж планировалось разместить в герметичной многослойной (преимущественно свинцовой) капсуле, составлявшей 25% процентов от веса всего самолёта, то есть, порядка 60 тонн. Отсутствие визуального обзора планировалось компенсировать оптическим перископом, а также телевизионными и радиолокационными экранами.

Правда, вскоре стало ясно, что управлять 250-тонной машиной, оснащённой ядерным реактором, примкнув к окуляру перископа, было весьма опасной затеей. Поэтому команда Мясищева вначале оснастила самолёт автоматической системой вождения, которая обеспечивала взлёт, набор высоты, заход на цель, наведение, возвращение и посадку, а потом они и вовсе отказались от наличия экипажа, предложив первый в мире проект атомного беспилотника.

Но дрон с ядерным реактором слишком опередил своё время. В армии сочли беспилотник слишком опасной новинкой, уязвимой для противника. К тому же, такой бомбардировщик после одного полёта должен был «фонить» ещё пару месяцев, что делало невозможным его техническое обслуживание.

Чернобыль в небе

Следующий проект Мясищева, атомолёт М-30, предполагалось оснастить безопасным и компактным ядерным двигателем закрытого типа. Но его нужно было ещё создать. Разработку поручили конструкционному бюро Кузнецова. Главной проблемой был размер реактора. В отличие от атомных реакторов ледоколов и субмарин, которые не имеют ограничения по размеру и весу и потому огромны, реактор атомолёта должен был быть минимальным по своим габаритам. По словам эксперта и участника проекта Анатолия Трянова, лишний килограмм двигателя увеличивал вес всего самолёта на три и больше килограмм. Генеральный конструктор авиапрома СССР Андрей Туполев постоянно критиковал разработчиков: «Ваш реактор похож на огромный дом, так знайте же, что дома по воздуху не летают».

В бюро объявили настоящую войну каждому грамму лишнего веса реактора. Тому, кто решит эту проблему, обещали денежную премию. В итоге выход был найден. Ядерный реактор получился размером с небольшой шкаф. Даже сам Курчатов, отец атомной бомбы, при виде реактора не поверил в его подлинность: «Это не может быть реактор, вы показываете мне макет».

Новинку вывезли на испытательный полигон в Семипалатинск. Но после ряда экспериментов выяснилось, что даже тот вариант реактора, который создатели считали наиболее безопасным, представляет большую опасность для атмосферы и окружающей среды из-за радиоактивных выбросов. К тому же, самолётам свойственно падать. А урана в реакторе атомолёта было не меньше, чем на чернобыльской АЭС. Сама мысль о том, что по небу летает ядерный реактор, который когда-то может упасть, была неприемлемой.

Роковой 60-й

Что в Америке, что в СССР проекты атомолётов были закрыты по одной и той же причине – внимание военных переключилось на более приоритетные разработки. В США это были первые атомные подлодки, в СССР на атомной авиации поставили крест ракетчики.

В 1960 году в Москве прошло особо важное совещание по перспективам развития стратегических систем оружия. На вопрос, сколько времени нужно, чтобы поднять в воздух стратегический бомбардировщик с ядерным припасом на борту, авиаконструкторы ответили: «сутки», а ракетчики ограничились минутами: «Нам бы только гироскопы раскрутить». К тому же ставилась под сомнение возможность атомолётов прорваться сквозь систему ПВО противника, в то время как баллистические ракеты не научились перехватывать и сегодня. У ракётчиков был ещё один козырь – они сумели убедить руководство, что стоят на пороге создания «абсолютного оружия», атомного спутника, который мог бы постоянно кружить вокруг земли с ядерным грузом, и по одному нажатию кнопки бросал бы его на нужную цель. Так перспектива «кнопочной войны», представленная Никите Хрущеву ракетчиками, поставила точку на советских атомолётах. По итогам совещания все перспективные проекты атомолётов были закрыты, а бюро Мясищева переквалифицировано на ракетно-космическую тематику.

Охотник за атомными подлодками

И всё-таки даже после рокового совещания у разработчиков атомолётов ещё теплилась надежда, что их трудам найдётся достойное применение. Проект был частично воскрешён с появлением в этом же году американских «поларисов» – двухступенчатых твёрдотопливных баллистических ракет, размещавшихся на атомных подводных лодках. Была высказана идея о создании атомолёта Ан-22ПЛО – охотника за подводными лодками, который мог бы неделями барражировать над местом, где лодки скрывались под водой, и в случае пуска ракеты – топить их. Но и на этот раз вмешалась политика. С конца 60-х годов в отношениях между СССР и США началась разрядка. Необходимость в «охотниках» отпала, тем более что против атомолётов выступал министр авиационной промышленности Пётр Дементьев, считавший этот проект слишком амбициозным. Судьба атомолётов в СССР была решена. Но идея создать самолёт, способный находиться в воздухе практически неограниченное время, осталась. В начале XXI века Америка заявила о начале работы над беспилотником, оснащённым ядерным двигателем. И несмотря на то, что проекту пока не дали ходу, кто знает, возможно, эра атомолётов уже не за горами.

marafonec

Бег на месте к горизонту

Ядерная энергетическая установка для ракет и подводных аппаратов — как это работает

https://sozero.livejournal.com/2018/03/03/
Вчера, без всякого преувеличения, мы стали свидетелями эпохального события, открывающего новые, совершенно фантастические перспективы для военной техники и (в перспективе) — энергетики и транспорта вообще.
Но для начала хотелось бы понять, как работает ядерная энергетическая установка для ракет и подводных аппаратов, о которой говорил Путин. Что именно в ней является движителем? Откуда берётся тяга? Не за счёт же вылетающих из сопла нейтронов.

Когда узнал со слов коллеги о том, что у нас созданы ракеты с практически неограниченной дальностью полёта, обалдел. Показалось, он что-то упустил, а слово «неограниченной» было упомянуто в каком-то узком смысле.
Но информация, полученная затем из первоисточника, сомнений не вызывала. Звучала, напомню, она так:
«Одно из них – создание малогабаритной сверхмощной ядерной энергетической установки, которая размещается в корпусе крылатой ракеты типа нашей новейшей ракеты Х-101 воздушного базирования или американского «Томагавка», но при этом обеспечивает в десятки раз – в десятки раз! – большую дальность полёта, которая является практически неограниченной.»
В услышанное невозможно было поверить, но не верить было нельзя — это сказал ОН. Включил мозг и тут же получил ответ. Да какой!
Ну, черти! Ну, гении! Нормальному человеку такое даже в голову не придёт!

Итак, до сих пор мы знали только о ядерных силовых установках для космических ракет. В космических ракетах обязательно есть вещество, которое, будучи разогретым или разогнанным ускорителем, питаемым ядерной силовой установкой, с силой выбрасывается из сопла ракеты и обеспечивает ей тягу.

Вещество при этом расходуется и время работы двигателя ограничено.

Такие ракеты уже были и ещё будут. А вот за счёт чего движется ракета нового типа, если её дальность является «практически неограниченной»?

Ядерная энергетическая установка для ракет

Чисто теоретически, кроме тяги на веществе, имеющемся в запасе на ракете, движение ракеты возможно за счёт тяги электрических двигателей с «пропеллерами» (винтовой двигатель). Электричество при этом производит генератор, питающийся от ядерной силовой установки.

Но такую массу без большого крыла на винтовой тяге, да ещё с винтами небольшого диаметра, в воздухе не удержать — слишком мала такая тяга. А это таки ракета, а не беспилотник.

Итого, остаётся самый неожиданный и, как оказалось, самый эффективный способ обеспечения ракеты веществом для тяги — взятие его из окружающего пространства.

Т.е., как бы это удивительно ни звучало, но новая ракета работает «на воздухе»!

В том смысле, что из её сопла вырывается именно разогретый воздух и более ничего! А воздух не закончится, пока ракета находится в атмосфере. Именно поэтому эта ракета — крылатая, т.е. её полёт проходит целиком в атмосфере.

Классические технологии ракет большой дальности старались сделать полёт ракеты выше, чтобы уменьшить трение о воздух и тем самым увеличить их дальность. Мы как всегда сломали шаблон и сделали ракету не просто большой, а неограниченной дальности именно в воздушной среде.

Неограниченная дальность полёта даёт возможность таким ракетам работать в режиме ожидания. Запущенная ракета прибывает в район патрулирования и нарезает там круги, ожидая доразведки данных о цели или прибытия цели в данный район. После чего неожиданно для цели немедленно её атакует.

Ядерная энергетическая установка для подводных аппаратов

Думаю, аналогично устроена и ядерная энергетическая установка для подводных аппаратов о которых говорил Путин. С той поправкой, что вместо воздуха используется вода.

Дополнительно об этом говорит то, что эти подводные аппараты обладают низкой шумностью. Известная торпеда «Шквал», разработанная ещё в советское время, имела скорость порядка 300 км/час, но была очень шумной. По сути это была ракета, летящая в воздушном пузыре.

За малошумностью же стоит новый принцип движения. И он — тот же самый, что и в ракете, потому что универсален. Была бы только окружающая среда минимально необходимой плотности.

Этому аппарату неплохо подошло бы название «Кальмар», потому что по сути это водомётный двигатель в «ядерном исполнении» 🙂

Что касается скорости, она кратно превосходит скорость самых быстрых надводных кораблей. Самые быстрые корабли (именно корабли, а не катера) имеют скорость до 100-120 км/час. Следовательно, с минимальным коэффициентом 2 получаем скорость 200-250 км/час. Под водой. И не очень шумно. И с дальностью в многие тысячи километров. Страшный сон наших недругов.

Относительно ограниченная по сравнению с ракетой дальность — временное явление и объясняется тем, что морская вода высокой температуры — очень агрессивная среда и материалы камеры, условно говоря, сгорания, имеют ограниченный ресурс. Со временем же дальность этих аппаратов может быть увеличена в разы только за счёт создания новых, более устойчивых материалов.

Ядерная энергетическая установка

Несколько слов о самой ядерной энергетической установке.

1. Поражает воображение фраза Путина:
«При объёме в сто раз меньше, чем у установок современных атомных подводных лодок, имеет большую мощность и в 200 раз меньшее время выхода на боевой режим, то есть на максимальную мощность.»

Опять одни вопросы.
Как они этого добились? Какие конструкторские решения и технологии применены?

1. Радикальное, на два порядка, увеличение отдачи мощности на единицу массы возможно только при условии приближения режима работы ядерного реактора к взрывному. При этом реактор надёжно управляется.
2. Поскольку околовзрывной режим работы обеспечивается надёжно, скорее всего, это реактор на быстрых нейтронах. На мой взгляд, только на них возможно безопасное использование столь критического режима работы. Кстати, для них топлива на Земле — на столетия.
3. Если же со временем мы узнаем, что это таки реактор на медленных нейтронах, я тем более снимаю шляпу перед нашими ядерщиками, потому что без официального заявления в это совершенно невозможно поверить.
В любом случае, смелость и изобретательность наших ядерщиков поразительна и достойна самых громких слов восхищения! Особенно приятно, что наши ребята умеют работать в тиши. А потом как грохнут новостью по голове — хоть стой, хоть падай! 🙂

Как это работает

Примерная, смысловая, схема работы двигателя ракеты на основе ядерной силовой установки выглядит так.

1. Открывается, условно говоря, впускной клапан. Набегающий воздушный поток попадает через него в камеру нагрева, которая постоянно разогрета от работы реактора.
2. Впускной клапан закрывается.
3. Воздух в камере нагревается.
4. Открывается выпускной клапан и воздух с большой скоростью вырывается из сопла ракеты.
5. Выпускной клапан закрывается.

Цикл повторяется с высокой частотой. Отсюда эффект непрерывной работы.

P.S. Описанный выше механизм, повторю, — смысловой. Он дан по просьбе читателей для лучшего понимания того, как этот двигатель может вообще работать. В реальности, не исключено, реализован прямоточный двигатель. Главное в данной статье — не определение типа двигателя, а выявление вещества (набегающего воздуха), которое используется в качестве единственного рабочего тела, дающего тягу ракете.

Безопасность

Использование открытия российских учёных в гражданском секторе тесно связано с безопасностью ядерной силовой установки. Не в смысле её возможного взрыва — думаю, этот вопрос решён, — а в смысле безопасности его выхлопа.

Защита малогабаритного ядерного двигателя явно меньше, чем у большого по размерам, поэтому нейтроны наверняка будут проникать в «камеру сгорания», а точнее, камеру разогрева воздуха, тем самым с некоторой вероятностью делая радиоактивным всё, что таковым можно в воздухе сделать.

Азот и кислород имеют радиоактивные изотопы с малым временем полураспада и не опасны. Радиоактивный углерод вещь долгоживущая. Но есть и хорошие новости.

Радиоактивный углерод образуется в верхних слоях атмосферы под действием космических лучей и так, так что свалить все на ядерные двигатели не получится. Но главное, концентрация углекислого газа в сухом воздухе составляет всего 0,02÷0,04%.

Учитывая же, что процент углерода, становящийся радиоактивным, величина ещё на несколько порядков меньшая, предварительно можно считать, что выхлоп ядерных двигателей не более опасен, чем выхлоп ТЭЦ, работающей на угле.

Более точная информация появится, когда дело подойдёт к гражданскому применению этих двигателей.

Перспективы

Честно говоря, от перспектив захватывает дух. Причём я уже говорю не о военных технологиях, здесь всё ясно, а о применении новых технологий в гражданском секторе.

Где могут быть применены ядерные силовые установки? Пока навскидку, чисто теоретически, в перспективе 20-30-50 лет.

1. Флот, в том числе гражданский, транспортный. Многое придётся переводить на подводные крылья. Зато скорость можно легко увеличить вдвое/втрое, а стоимость эксплуатации с годами будет только падать.
2. Авиация, прежде всего транспортная. Хотя, если безопасность с точки зрения опасности облучения окажется минимальной, возможно применение и для гражданских перевозок.
3. Авиация с вертикальным взлётом и посадкой. С использованием резервуаров со сжатым воздухом, пополняемых во время полёта. Иначе, на малых скоростях, необходимую тягу не обеспечить.
4. Локомотивы скоростных электропоездов. С использованием промежуточного электрогенератора.
5. Грузовые автомобили на электротяге. Тоже, разумеется, с использованием промежуточного электрогенератора. Это, думаю, будет в отдалённой перспективе, когда силовые установки удастся уменьшить ещё в несколько раз. Но исключать такой возможности я бы не стал.

Это уже не говоря о наземном/мобильном использовании ядерных электроустановок. Одна беда — для работы таких малогабаритных ядерных реакторов требуются не уран/плутоний, а гораздо более дорогие радиоактивные элементы, наработка которых в ядерных же реакторах пока очень и очень дорога и требует времени. Но и эта задача может быть со временем решена.

Друзья, обозначена новая эра в сфере энергетики и транспорта. Судя по всему, Россия станет лидером этих направлений на ближайшие десятилетия.

Примите мои поздравления.
Скучно не будет!

Атомные заряды мощностью примерно в килотонну на этапе взлёта должны были взрываться со скоростью один заряд в секунду. Ударная волна — расширяющееся плазменное облако — должна была приниматься «толкателем» — мощным металлическим диском с теплозащитным покрытием, и, потом, отразившись от него, создать реактивную тягу. Импульс, принятый плитой толкателя, через элементы конструкции передавался кораблю. Затем, когда высота и скорость вырастут, частоту взрывов можно было уменьшить. При взлёте корабль должен был лететь строго вертикально, чтобы минимизировать площадь радиоактивного загрязнения атмосферы.

В США были проведены несколько испытаний модели летательного аппарата с импульсным приводом (для взрывов использовалась обычная химическая взрывчатка). Получены положительные результаты о принципиальной возможности управляемого полёта аппарата с импульсным двигателем.

Реальных испытаний импульсного ЯРД с подрывом ядерных устройств не проводилось.

Ядерная энергетическая установка для ракет и подводных аппаратов — как это работает

На днях, без всякого преувеличения, мы стали свидетелями эпохального события, открывающего новые, совершенно фантастические перспективы для военной техники и (в перспективе) — энергетики и транспорта вообще.

Но для начала хотелось бы понять, как работает ядерная энергетическая установка для ракет и подводных аппаратов, о которой говорил Путин. Что именно в ней является движителем? Откуда берётся тяга? Не за счёт же вылетающих из сопла нейтронов.

Когда узнал со слов коллеги о том, что у нас созданы ракеты с практически неограниченной дальностью полёта, обалдел. Показалось, он что-то упустил, а слово «неограниченной» было упомянуто в каком-то узком смысле.

Но информация, полученная затем из первоисточника, сомнений не вызывала. Звучала, напомню, она так:

Одно из них – создание малогабаритной сверхмощной ядерной энергетической установки, которая размещается в корпусе крылатой ракеты типа нашей новейшей ракеты Х-101 воздушного базирования или американского «Томагавка», но при этом обеспечивает в десятки раз – в десятки раз! – большую дальность полёта, которая является практически неограниченной.

В услышанное невозможно было поверить, но не верить было нельзя — это сказал ОН. Включил мозг и тут же получил ответ. Да какой!

Ну, черти! Ну, гении! Нормальному человеку такое даже в голову не придёт!

Итак, до сих пор мы знали только о ядерных силовых установках для космических ракет. В космических ракетах обязательно есть вещество, которое, будучи разогретым или разогнанным ускорителем, питаемым ядерной силовой установкой, с силой выбрасывается из сопла ракеты и обеспечивает ей тягу.

Вещество при этом расходуется и время работы двигателя ограничено.

Такие ракеты уже были и ещё будут. А вот за счёт чего движется ракета нового типа, если её дальность является «практически неограниченной»?

Ядерная энергетическая установка для ракет

Чисто теоретически, кроме тяги на веществе, имеющемся в запасе на ракете, движение ракеты возможно за счёт тяги электрических двигателей с «пропеллерами» (винтовой двигатель). Электричество при этом производит генератор, питающийся от ядерной силовой установки.

Но такую массу без большого крыла на винтовой тяге, да ещё с винтами небольшого диаметра, в воздухе не удержать — слишком мала такая тяга. А это таки ракета, а не беспилотник.

Итого, остаётся самый неожиданный и, как оказалось, самый эффективный способ обеспечения ракеты веществом для тяги — взятие его из окружающего пространства.

Т.е., как бы это удивительно ни звучало, но новая ракета работает «на воздухе»!

В том смысле, что из её сопла вырывается именно разогретый воздух и более ничего! А воздух не закончится, пока ракета находится в атмосфере. Именно поэтому эта ракета — крылатая, т.е. её полёт проходит целиком в атмосфере.

Классические технологии ракет большой дальности старались сделать полёт ракеты выше, чтобы уменьшить трение о воздух и тем самым увеличить их дальность. Мы как всегда сломали шаблон и сделали ракету не просто большой, а неограниченной дальности именно в воздушной среде.

Неограниченная дальность полёта даёт возможность таким ракетам работать в режиме ожидания. Запущенная ракета прибывает в район патрулирования и нарезает там круги, ожидая доразведки данных о цели или прибытия цели в данный район. После чего неожиданно для цели немедленно её атакует.

Ядерная энергетическая установка для подводных аппаратов

Думаю, аналогично устроена и ядерная энергетическая установка для подводных аппаратов о которых говорил Путин. С той поправкой, что вместо воздуха используется вода.

Дополнительно об этом говорит то, что эти подводные аппараты обладают низкой шумностью. Известная торпеда «Шквал», разработанная ещё в советское время, имела скорость порядка 300 км/час, но была очень шумной. По сути это была ракета, летящая в воздушном пузыре.

За малошумностью же стоит новый принцип движения. И он — тот же самый, что и в ракете, потому что универсален. Была бы только окружающая среда минимально необходимой плотности.

Этому аппарату неплохо подошло бы название «Кальмар», потому что по сути это водомётный двигатель в «ядерном исполнении» 🙂

Что касается скорости, она кратно превосходит скорость самых быстрых надводных кораблей. Самые быстрые корабли (именно корабли, а не катера) имеют скорость до 100-120 км/час. Следовательно, с минимальным коэффициентом 2 получаем скорость 200-250 км/час. Под водой. И не очень шумно. И с дальностью в многие тысячи километров. Страшный сон наших недругов.

Относительно ограниченная по сравнению с ракетой дальность — временное явление и объясняется тем, что морская вода высокой температуры — очень агрессивная среда и материалы камеры, условно говоря, сгорания, имеют ограниченный ресурс. Со временем же дальность этих аппаратов может быть увеличена в разы только за счёт создания новых, более устойчивых материалов.

Ядерная энергетическая установка

Несколько слов о самой ядерной энергетической установке.

1. Поражает воображение фраза Путина:

При объёме в сто раз меньше, чем у установок современных атомных подводных лодок, имеет большую мощность и в 200 раз меньшее время выхода на боевой режим, то есть на максимальную мощность.

Опять одни вопросы.

Как они этого добились? Какие конструкторские решения и технологии применены?

1. Радикальное, на два порядка, увеличение отдачи мощности на единицу массы возможно только при условии приближения режима работы ядерного реактора к взрывному. При этом реактор надёжно управляется.

2. Поскольку околовзрывной режим работы обеспечивается надёжно, скорее всего, это реактор на быстрых нейтронах. На мой взгляд, только на них возможно безопасное использование столь критического режима работы. Кстати, для них топлива на Земле — на столетия.

3. Если же со временем мы узнаем, что это таки реактор на медленных нейтронах, я тем более снимаю шляпу перед нашими ядерщиками, потому что без официального заявления в это совершенно невозможно поверить.

В любом случае, смелость и изобретательность наших ядерщиков поразительна и достойна самых громких слов восхищения! Особенно приятно, что наши ребята умеют работать в тиши. А потом как грохнут новостью по голове — хоть стой, хоть падай! 🙂

Как это работает

Примерная, смысловая, схема работы двигателя ракеты на основе ядерной силовой установки выглядит так.

1. Открывается, условно говоря, впускной клапан. Набегающий воздушный поток попадает через него в камеру нагрева, которая постоянно разогрета от работы реактора.

2. Впускной клапан закрывается.

3. Воздух в камере нагревается.

4. Открывается выпускной клапан и воздух с большой скоростью вырывается из сопла ракеты.

5. Выпускной клапан закрывается.

Цикл повторяется с высокой частотой. Отсюда эффект непрерывной работы.

P.S. Описанный выше механизм, повторю, — смысловой. Он дан по просьбе читателей для лучшего понимания того, как этот двигатель может вообще работать. В реальности, не исключено, реализован прямоточный двигатель. Главное в данной статье — не определение типа двигателя, а выявление вещества (набегающего воздуха), которое используется в качестве единственного рабочего тела, дающего тягу ракете.

Безопасность

Использование открытия российских учёных в гражданском секторе тесно связано с безопасностью ядерной силовой установки. Не в смысле её возможного взрыва — думаю, этот вопрос решён, — а в смысле безопасности его выхлопа.

Защита малогабаритного ядерного двигателя явно меньше, чем у большого по размерам, поэтому нейтроны наверняка будут проникать в «камеру сгорания», а точнее, камеру разогрева воздуха, тем самым с некоторой вероятностью делая радиоактивным всё, что таковым можно в воздухе сделать.

Азот и кислород имеют радиоактивные изотопы с малым временем полураспада и не опасны. Радиоактивный углерод вещь долгоживущая. Но есть и хорошие новости.

Радиоактивный углерод образуется в верхних слоях атмосферы под действием космических лучей и так, так что свалить все на ядерные двигатели не получится. Но главное, концентрация углекислого газа в сухом воздухе составляет всего 0,02÷0,04%.

Учитывая же, что процент углерода, становящийся радиоактивным, величина ещё на несколько порядков меньшая, предварительно можно считать, что выхлоп ядерных двигателей не более опасен, чем выхлоп ТЭЦ, работающей на угле.

Более точная информация появится, когда дело подойдёт к гражданскому применению этих двигателей.

Перспективы

Честно говоря, от перспектив захватывает дух. Причём я уже говорю не о военных технологиях, здесь всё ясно, а о применении новых технологий в гражданском секторе.

Где могут быть применены ядерные силовые установки? Пока навскидку, чисто теоретически, в перспективе 20-30-50 лет.

1. Флот, в том числе гражданский, транспортный. Многое придётся переводить на подводные крылья. Зато скорость можно легко увеличить вдвое/втрое, а стоимость эксплуатации с годами будет только падать.

2. Авиация, прежде всего транспортная. Хотя, если безопасность с точки зрения опасности облучения окажется минимальной, возможно применение и для гражданских перевозок.

3. Авиация с вертикальным взлётом и посадкой. С использованием резервуаров со сжатым воздухом, пополняемых во время полёта. Иначе, на малых скоростях, необходимую тягу не обеспечить.

4. Локомотивы скоростных электропоездов. С использованием промежуточного электрогенератора.

5. Грузовые автомобили на электротяге. Тоже, разумеется, с использованием промежуточного электрогенератора. Это, думаю, будет в отдалённой перспективе, когда силовые установки удастся уменьшить ещё в несколько раз. Но исключать такой возможности я бы не стал.

Это уже не говоря о наземном/мобильном использовании ядерных электроустановок. Одна беда — для работы таких малогабаритных ядерных реакторов требуются не уран/плутоний, а гораздо более дорогие радиоактивные элементы, наработка которых в ядерных же реакторах пока очень и очень дорога и требует времени. Но и эта задача может быть со временем решена.

Друзья, обозначена новая эра в сфере энергетики и транспорта. Судя по всему, Россия станет лидером этих направлений на ближайшие десятилетия.

Примите мои поздравления.
Скучно не будет!

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector