Aklaypart.ru

Авто Журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Воздух как топливо для двигателей

Какие альтернативные виды топлива существуют?

Последние годы стали одними из худших по среднероссийскому росту цен на бензин, достигнув более 30 рублей за литр бензина марки Аи-92 на подавляющем большинстве АЗС. Кроме того, эксперты прогнозируют, что новые повышения цен на бензин неизбежны, и это естественно заставляет задаться вопросом, какие альтернативы могут быть бензиновым (и дизельным) автомобилям.

Давайте взглянем на некоторую статистику по ценам на топливо из продуктов переработки нефти:

Динамика роста цен на бензин Аи-92

Динамика роста цен на дизельное топливо

Статистика цен на бензин в различных странах

Ну, как выясняется, есть много таких альтернатив. И многие из них находятся на дороге к созданию или даже в дилерских центрах прямо сейчас. В то время как некоторые альтернативы займут некоторое время, прежде чем выйдут в круг широкого использования, всё же довольно интересно знать, в каких направлениях работают на сегодняшний день компании, которым не всё равно, на чём будут ездить машины в будущем. В обозримом будущем.

Итак, какие альтернативные виды топлива существуют на сегодняшний день?

Водород

Использование водорода в качестве топлива Вашего автомобиля может вызвать в воображении образы Гинденбурга, но это на самом деле вполне безопасно. Водород может на самом деле присутствовать в виде топлива как такового в двух различных типах автомобилей: автомобилей с топливными элементами в виде водорода и автомобилей, которые имеют двигатель внутреннего сгорания, который спроектирован, чтобы использовать водород вместо бензина.

В первом случае водород используется для выработки электроэнергии, которая затем используется для питания электродвигателя. Так водородный автомобиль использует топливный элемент для выработки собственной электроэнергии. В химическом процессе в топливном элементе водород и кислород объединены, чтобы создать электричество, и единственным побочным продуктом этого процесса является водяной пар. Эту технологию уже используют в автомобиле Honda FCX Clarity, и в настоящее время автомобиль получает всё больший рейтинг.

В двигателе внутреннего сгорания водород является источником топлива вместо привычного бензина или дизельного топлива. Вместо вредных выбросов CO2, которые производит бензин, опять же, водородные автомобили производят только водяной пар. Много автопроизводителей в настоящее время испытывают водородные автомобили. В настоящее время BMW Hydrogen 7 является, пожалуй, самым известным из них — компания сдала в аренду несколько опытных таких машин в Германии и США, и некоторые тесты даже показали, что автомобиль на самом деле очищает воздух вокруг себя во время работы.

Тем не менее, водородные автомобили пока не получили широкого распространения в значительной степени, потому что сегодня нет необходимой инфраструктуры водородных заправочных станций. А вот следующий вид альтернативного топлива несколько легче найти — и по сути, Вы используете его прямо сейчас.

Электричество

Может показаться, что электрические автомобили — это долгожданный прорыв в использовании альтернативных видов топлива. Но дело в том, что некоторые из самых ранних автомобилей уже использовали электродвигатели. Тем не менее, только из-за последних событий, включая широкое распространение как следствие активной PR-кампании автомобилей Тесла, электрические автомобили стали более жизнеспособным методом для повседневной езды.

Но что сдерживает технологию от проникновения в широкие массы? Технология батареи и электродвигателя. Перемещение автомобиля требует много энергии, и, чтобы делать это на высоких скоростях и на большие расстояния, требуется очень много энергии. В прошлом электрические автомобили не могли проезжать большие расстояния (более нескольких километров), и как только их батареи садились, требовались долгие часы, чтобы их перезарядить. Дело в том, что электродвигатель сам по себе достаточно прожорлив в плане потребления электроэнергии. Добавьте к этому огромный вес самого аккумулятора (в современном электромобиле он может составлять половину массы всей машины), и недостатки такого вида альтернативного топлива станут достаточно весомыми.

Тем не менее, с новыми технологиями аккумуляторных батарей некоторые автопроизводители преодолели такие ограничения. Новые батареи (литий-ионные батареи, если быть точным) являются такими же, какие установлены в Ваш сотовый телефон или ноутбук. Они заряжаются достаточно быстро и работают дольше. А автомобили, такие как Tesla Model S, используют их не просто для перемещения в физическом понимании этого слова, а для получения производительности, достойной суперкаров. Другие автомобили, которые также укрепляются на рынке, такие как Chevy Volt и Toyota Prius, например, используют эти типы батарей в сочетании с двигателем внутреннего сгорания, чтобы создать новый класс автомобиля с расширенным диапазоном использования источника передвижения. Батареи можно заряжать, подключив машину к обычной розетке; однако, когда заряд батареи начинает иссякать, включается бензиновый генератор, чтобы перезарядить её и не допустить остановки автомобиля.

Биодизель

Мы надеемся, что Вы прислушались к совету, что обезжиренная диета с ограниченным количеством жареной пищи хороша для Вашего здоровья. Впрочем, то же самое не обязательно справедливо для Вашего автомобиля.

Биодизель является одним из видов топлива, который производится из растительного масла. Любой автомобиль с дизельным двигателем может работать на нём, но не пытайтесь запустить двигатель, выжав перед этим в топливный бак салфетку, оставшуюся с Вашего последнего визита в Макдональдс. Для того, чтобы привести в движение машину, масло должно быть преобразовано в биодизельное топливо через определённый химический процесс.

Сам процесс можно реально сделать в домашних условиях. На самом деле, много любителей биодизеля делают своё собственное топливо с использованием растительного масла из местных ресторанов. Однако, существует небольшой риск, связанный с этим процессом. Если Вы сделаете это неправильно, Вы можете наделать много вреда для Вашего автомобиля (не говоря уже о своём доме и собственной безопасности). Прежде чем пытаться сделать биодизель по какому-либо найденному рецепту, убедитесь, что это хорошая идея, потренировавшись некоторое время с кем-то, кто уже успешно делал это.

Однако, энтузиасты по биодизелю по-настоящему довольны такой идеей. Такое топливо не только значительно дешевле и чище, чем ископаемое дизельное топливо, оно также придаст выхлопам Вашего авто запах картофеля-фри. Без шуток!

Этанол

Теперь Вы знаете, что можете запустить автомобиль даже на растительном масле, но что, если Вам критично не нравится ездить по городу, пахнущему фри или у Вас вовсе аллергия или неприятные ассоциации с этим запахом? Каковы другие варианты? На самом деле, есть и другие варианты заставить автомобиль работать на овощах.

Этанол также является одним из наиболее распространённых видов альтернативного топлива. Его часто добавляют в бензин в летнее время, чтобы помочь сократить вредные выбросы. Этанол, на самом деле, является одним из видов алкоголя (но даже не думайте пытаться его пить), произведённого из растительного материала. В Соединенных Штатах он обычно производится из кукурузы, в то время как в других странах, например, в Бразилии, его делают из сахарного тростника.

Сегодня достаточно немало автопроизводителей предлагают свои автомобили с многотопливными двигателями. Эти двигатели могут работать на традиционном бензине или этаноле E85 в топливной смеси, когда топливо состоит на 15 процентов из бензина и на 85 процентов из этанола. Этанол получил широкое признание как хороший способ удешевить бензин в странах, где нефть закупается из других стран — яркий пример этому — США. Тем не менее, требуется довольно много энергии, чтобы произвести этанол, поэтому там, где нефть стоит дешевле, так как добывается внутри страны (Россия и относится к таким странам), этанол не особо то и выгоден. Кроме того, существует необычное мнение, что, поскольку фермеры могут заработать больше денег, выращивая сельскохозяйственные культуры для производства этанола, они перестанут выращивать эти культуры для производства продуктов питания, что могло бы резко поднять цены на продовольствие.

Читать еще:  Греется двигатель лада приора причина

Несмотря на эти опасения, этанол сегодня предлагает много преимуществ в качестве альтернативного топлива, а сеть этаноловых заправочных станций в ряде стран продолжает расти.

Сжиженный природный газ

Продолжая кулинарную тему, отметим следующий альтернативный вид топлива, который, впрочем, производится не из пищевых продуктов, но его также можно встретить на кухне. В отличие от этанола и биодизеля, это не то, что Вы могли бы съесть или выпить в исходной его субстанции, но это то, что топ-повара используют для приготовления пищи: природный газ.

Природный газ является ископаемым топливом. Да, это не совсем экологически чистый продукт, но в результате его использования в автомобилях производится несколько меньше вредных выбросов. Природный газ, который Вы часто используете, чтобы готовить пищу и согреть Ваш дом, является природным газом в виде очень низкого давления таким образом, чтобы он стал сжиженным, чтобы давать намного больше энергии и занимать при этом меньше места. Когда сжиженный природный газ (СПГ) сжигается, он освобождает гораздо больше энергии. Так, например, вместо того, чтобы просто нагревать суп — несжатый природный газ справляется с этим просто отменно, сжиженный природный газ может питать крупногабаритное оборудование, такое как грузовик. В общем-то это основная цель, для которой он используется — питание тяжёлых грузовиков, путешествующих на дальние расстояния.

Сжиженный нефтяной газ

Если Вы недавно были на пикнике, то Вы, вероятно, знакомы с нашим следующим альтернативным видом топлива: сжиженным нефтяным газом (или просто сжиженным газом). Всё ещё не уверены, что Вы видели это когда-либо? Ну, тогда вспомните газовые горелки с баллончиками с пропаном или грузовые «газельки» с красным баллоном пропана вместо бензобака!

Пропан является общим названием для сжиженного нефтяного газа, хотя это не совсем верно. Сжиженный нефтяной газ представляет собой углеводородный газ под низким давлением. Он состоит в основном из пропана, но также включает в себя другие углеводородные газы, и, прежде всего, это бутан. Сжиженный нефтяной газ хранится под давлением для того, чтобы находиться в жидком виде. Подобно сжиженному природному газу, сжиженный нефтяной газ (СНГ) даёт гораздо больше энергии, будучи плотным, и, следовательно, становится более полезным для питания легковых автомобилей и грузовиков.

Сжиженный газ работает в обыкновенном двигателе внутреннего сгорания после совсем небольших модификаций (правильно это называть установкой ГБО на автомобиль — адаптация машины под использование «пропана»). В то время как этот вид топлива не используется широко для автомобилей во многих странах, таких как США, к примеру, всё же в ряде стран до 10 процентов использования автомобильного топлива приходится на сжиженный нефтяной газ, и наша страна в этом плане — один из лидеров использования СНГ.

Топливовоздушная смесь

Удельный расход топлива в значитель­ной степени зависит от соотношения воздух/топливо (см. рис. «Влияние коэффициента избытка воздуха на удельный расход топлива и неравномерную работу двигателя при постоянной эффективной мощности» ). Для обеспечения действительно полного сгорания топлива требуется избыточное количество воздуха и, следовательно, как можно более низкий расход топлива. Однако здесь имеют место ограничения, зависящие от воспламеняе­мости и доступного времени сгорания смеси.

Также состав смеси влияет на эффектив­ность снижения выбросов токсичных ве­ществ с отработавшими газами. В настоящее время с этой целью используется трехком­понентный каталитический нейтрализатор, который действует с максимальной произ­водительностью при стехиометрическом со­отношении воздух/топливо. Это может зна­чительно снизить вероятность повреждения компонентов системы очистки отработавших газов. Поэтому современные двигатели, когда это позволяют условия работы, рабо­тают при стехиометрическом составе смеси.

Для определенных условий работы двига­теля требуется адаптация состава смеси. Так, изменение состава смеси требуется при пуске холодного двигателя. Отсюда следует, что си­стемы смесеобразования должны обеспечи­вать работу двигателя в различных режимах.

Система подачи воздуха в дизельный двигатель

Как известно, современный дизельный двигатель на разных автомобилях и спецтехнике обычно оснащается турбокомпрессором. Также данное решение активно используется и на турбобензиновых ДВС.

Другими словами, для получения необходимой отдачи от моторов силовую установку дополнительно турбируют. Дизельный агрегат с турбонаддувом получил название турбодизель. Давайте остановимся на схеме подачи воздуха в такие моторы более подробно.

На примере турбодизеля стоит выделить следующие элементы системы питания воздухом:

  • воздухозаборник;
  • воздухоочиститель (воздушный фильтр);
  • турбокомпрессор;
  • специальный воздушный радиатор (интеркулер);
  • впускной коллектор;

С функцией воздухозаборника и воздушного фильтра мы уже ознакомились при рассмотрении атмосферного бензинового мотора. Что касается турбодвигателей на спецтехнике, которая работает в условиях сильной запыленности и общего загрязнения воздуха, используется многоступенчатая система очистки (двух или даже трехступенчатые схемы). В конструкцию может быть включен инерционный предварительный очиститель воздуха и другие подобные решения.

Итак, после прохода через фильтры, воздух втягивается в турбокомпрессор. После турбины воздух идет по трубопроводам уже под давлением, проходя через так называемый воздушный радиатор. Дело в том, что после сжатия в турбине воздух нагревается. При этом если его охладить перед подачей в цилиндры, тогда общая масса воздуха увеличивается.

Далее сжатый и охлажденный воздух попадает во впускной коллектор, а затем и в цилиндры дизельного двигателя. Что касается турбокомпрессора, данное устройство использует энергию отработавших газов. Если просто, газы под давлением вращают турбинное колесо, за счет такого вращения начинает крутиться и компрессорное колесо, которое закреплено на одном валу вместе с турбинным колесом. Затем выхлоп после турбины попадает в выпускную систему ТС и выводится в атмосферу.

Отметим, что существует много разновидностей турбин, которые отличаются по размерам, по своей производительности и могут иметь ряд индивидуальных отличий в общей схеме устройства. Еще добавим, что дизельный двигатель долгое время вообще не имел дроссельной заслонки по сравнению с бензиновыми аналогами. В двух словах, мощность в дизельном агрегате регулируется не количеством подаваемого в цилиндры воздуха, а количеством впрыскиваемого горючего.

Работает дроссельный узел тогда, когда нагрузки на двигатель минимальны, то есть мотор не нуждается в мощном потоке свежего воздуха. В этот момент заслонка частично перекрывает подачу воздуха, параллельно с этим срабатывает клапан системы рециркуляции отработавших газов EGR.

В результате оставшийся воздух перемешивается с выхлопными газами, после чего такая смесь снова поступает в цилиндры. Подача выхлопа вместе с воздухом снижает температуру в камере сгорания, в результате в отработавших газах отмечается уменьшение окиси азота.

Действительно ли водород на столько опасен?

Наверное, после всего прочитанного Вы будете уважаемые читатели просто в шоке, что водород на столько опасен. И возможно никогда не захочете покупать себе водородный автомобиль, если в будущем у вас появится такая возможность(?).

Читать еще:  2107 мигает неисправности системы управления двигателем

На самом деле не все так уж и плохо. Поскольку газообразный водород чрезвычайно легок, то при утечке он быстро рассеется в самой атмосфере. Тогда ни какой гремучей смеси не получится и опасность взрыва будет сведена к минимуму.

Что касается опасности удушья, то мы ответим вам так: –такая проблема может случиться только в замкнутом пространстве, например в гараже. Если же утечка водорода произойдет на открытом воздухе, то его концентрация будет незначительной и небольшой, опасности для жизни она не представляет.

На двух колесах

Чем легче автомобиль на сжатом воздухе, тем он более эффективен в плане эксплуатационных и экономических показателей. Логичный вывод из этого утверждения — почему бы не сделать скутер или мотоцикл?

Этим озаботился австралиец Дин Бенстед, который в 2011 году продемонстрировал миру кроссовый мотоцикл O2 Pursuit с силовым агрегатом, разработанным фирмой Engineair. Последняя специализируется на уже упомянутых роторных воздушных двигателях разработки Анжело ди Пьетро. По сути, это классической компоновки «ванкели» без сгорания — ротор приводится в движение подачей воздуха в камеры. Бенстед пошел при разработке от обратного. Сперва он заказал Engineair двигатель, а потом построил вокруг него мотоцикл, использовав раму и часть элементов от серийной Yamaha WR250R. Машина получилась на удивление энергоэффективной: на одной заправке она проходит 100 км и в теории развивает максимальную скорость 140 км/ч. Эти показатели, к слову, превышают аналогичные у многих электрических мотоциклов. Бенстед остроумно сыграл на форме баллона, вписав его в раму, — это позволило сэкономить место; двигатель в два раза компактнее своего бензинового собрата, а свободное место позволяет установить второй баллон, увеличив пробег мотоцикла в два раза.

Но, к сожалению, O2 Pursuit остался лишь одноразовой игрушкой, хотя и был номинирован на престижную изобретательскую премию, учрежденную Джеймсом Дайсоном. Спустя два года идею Бенстеда подхватил другой австралиец, Дарби Бичено, который предложил создать по схожей схеме не мотоцикл, а сугубо городское транспортное средство, скутер. Его EcoMoto 2013 должен быть сделан из металла и бамбука (никакого пластика), но дальше рендеров и чертежей дело пока что не продвинулось.

Помимо Бенстеда и Бичено, схожую машину в 2010 году построил Эвин И Ян (его проект назывался Green Speed Air Motorcycle). Все три конструктора, к слову, были студентами Королевского технологического института Мельбурна, и потому их проекты схожи, используют один и тот же двигатель и. не имеют шанса на серию, оставаясь исследовательскими работами.

Основные системы наддува

Независимо от конструкции, воздух в двигатель попадает из атмосферы. Это актуально как для бензиновых, так и дизельных модификаций. В общем случае в схему входят:

  • воздухозаборник;
  • фильтр;
  • впускной патрубок;
  • турбокомпрессор;
  • дроссельная заслонка (для бензиновых двигателей);
  • промежуточный радиатор;
  • впускной коллектор.

Турбокомпрессором (турбиной) оснащают дизельные моторы, но принудительным наддувом оборудуют также и работающие на бензине. Наддув позволяет силовому агрегату развить более высокую мощность за счёт генерации большего давления.

Система подачи воздуха на бензиновых двигателях

Конструкция систем питания воздухом моторов любых моделей принципиальных отличий не имеет. Первый элемент — воздухозаборник, компонент двигателя, который отвечает за сообщение с атмосферой. Его устанавливают под капотом так, чтобы эффективно забирать воздушные массы на всех скоростных режимах. Раструб воздухозаборника закреплён корпусом головной оптики с правой или с левой стороны авто, около радиаторной решётки.

После попадания в заборник поток движется в фильтр. Это обязательный компонент воздушной системы двигателя, отвечающий за очистку потока от пыли. Если мельчайшие частицы из атмосферы будут беспрепятственно поступать в ДВС, начнётся интенсивный износ стенок цилиндров, что приведёт к поломке мотора. Фильтр очистки поступающего воздуха включает фильтрующий элемент и корпус. Устанавливают его в подкапотном пространстве недалеко от воздухозаборника, к корпусу авто крепят через резиновые демпферы.

Миновав фильтр, воздушный поток попадает во впускной патрубок. Это соединительная труба, предназначенная для дистанцирования элементов системы. В нижней части патрубка делают «ловушку» для воды. Это небольшое углубление, куда стекает жидкость, попавшая в устройство для подачи воздуха после преодоления глубоких луж.

В корпусе фильтра или во впускном патрубке устанавливают датчик, измеряющий скорость движения воздушных масс.

Регулирует обороты коленвала дроссельная заслонка. Механизм напрямую связан с педалью акселератора, при нажатии на которую увеличивается воздушный поток. В корпусе дросселя расположен регулятор холостых оборотов и датчик положения заслонки. Первый отвечает за поддержание минимального вращения коленвала, второй — передаёт информацию блоку управления о степени открытия механизма.

После дроссельной заслонки поток попадает во впускной коллектор. Это последняя деталь в схеме на пути подачи воздуха в цилиндры. Делают его из металла (сплава на основе алюминия) или пластика. Коллектор отвечает за формирование горючей смеси, которая в дальнейшем попадает в камеру сгорания. Впрыск горючего осуществляют инжекторы, установленные непосредственно в корпусе детали.

Система подачи воздуха в дизельный двигатель

Компоновка мотора, работающего на солярке, от бензинового практически не отличается. В схеме питания отсутствует дроссельная заслонка, установлен турбокомпрессор и реализован более сложный принцип формирования топливной смеси. В двигатель с дизельной аппаратурой и турбиной воздушный поток попадает через заборник, который представляет собой полный аналог элемента бензинового мотора. Очистка воздушной массы также происходит в фильтре. Однако для силовых агрегатов, устанавливаемых на спецтехнику, предусмотрена многоступенчатая фильтрация. В условиях сильной запылённости используют инерционный предварительный очиститель и другие подобные решения.

После фильтра воздушные массы попадают в центробежный нагнетатель. Турбина работает за счёт энергии отработанных газов и предназначена для генерации большего крутящего момента. Поток, проходя через нагнетатель, нагревается. Для его охлаждения предусмотрен промежуточный теплообменник — интеркулер. Элемент позволяет незначительно повысить мощность ДВС по сравнению с базовыми характеристиками.

Последний элемент системы — коллектор. В отличие от бензинового, в дизельном нет дроссельного узла, а воздух беспрепятственно попадает в цилиндры. Генерация крутящего момента регулируется количеством впрыскиваемого топлива. Однако в современных моторах заслонка всё же есть, но выполняет она другую функцию. Совместно с клапаном EGR она способна улучшить экологические показатели мотора на переходных режимах работы. Снижение токсичности выхлопных газов происходит за счёт повторного их использования при формировании горючей смеси.

Система регенерации выхлопных газов позволяет снизить их токсичность, но в то же время существенно сокращает ресурс силового агрегата. Моторы, оснащённые этой технологией, работают в 4-5 раз меньше до капитального ремонта.

Система контроля соотношения «воздух/топливо» для газодизельных двигателей.

Исторически сложилось, что газодизельные решения должны быть максимально простыми и дешевыми. Такой подход диктовался прежде всего экономическими соображениями так, как конверсии подвергались восновном бывшие в употребление машины с маленьким остаточным сроком службы. И он безусловно оправдан. Не стоит забывать и о надежности, по настоящему надежны только простые решения.

Каждое новшество и усложнение систем с большим трудом пробивало себе дорогу в жизнь. Первое поколение газодиельных систем не имело даже средств контроля подачи дизельного топлива ( эмуляция педали или упраление давлением для топливной аппаратуры common rail ). Однако, производителям и клиентам достаточно быстро стало понятно, что без уменьшения количества подаваемого топлива практически не возможно добится замещения выше 40%. И системы эмуляции нажатия на педаль газа стали использоваться в газодизельных комплектах повсеместно.

Читать еще:  Renault sandero stepway характеристики двигателя

Очередным претендентом на новый стандарт «де факто» для газодизельных систем является воздушная заслонка.

Для понимания причины важность регулирования количества подаваемого воздуха придется немного углубится в теорию.

Понятие о регулировании ДВС ( качественное и количественное регулирование ). [1]

Первый способ регулирования ДВС — изменение массы свежего заряда, поступающего в цилиндр двигателя. В этом случае для понижения мощности двигателя уменьшают массу свежего заряда без изменения состава горючей смеси. Такой способ регулирования называется количественным регулированием и практически осуществляется путем установки дополнительного сопротивления в виде дроссельной заслонки во впускном трубопроводе. В результате дросселирования свежего заряда давление его уменьшается. Чем больше прикрыто проходное сечение, тем выше сопротивление впуска и меньше наполнение цилиндра, а следовательно, развиваемая двигателем мощность.
Существенным недостатком количественного регулирования является увеличение насосных потерь вследствие дросселирования и значительное снижение давления в конце сжатия при работе на малых нагрузках. К преимуществу этогоспособа регулирования следует отнести то, что при этом можно выбрать рациональный коэффициент избытка воздуха, обеспечивающий хорошее сгорание топлива на всех режимах работы двигателя.

При втором способе регулирования — остается постоянным количество воздуха,поступающего в цилиндр, но меняется расходвпрыскиваемого через форсунку топлива, что приводит к изменению качества горючей смеси, а следовательно, теплоты сгорания горючей смесии развиваемой двигателем мощности. Этот способ регулирования называется качественным регулированием. Ввиду того, что расход воздуха, поступающего в цилиндр, с изменением нагрузки остается постоянным, при качественном регулировании давление ра в цилиндре в конце впуска, давление рс в конце сжатия и температура Тс в конце сжатия при одной и той же частоте вращения не меняются.
Значительное изменение состава горючей смеси при качественном регулировании обусловливает невозможность его применения в двигателях с внешним смесеобразованием: при увеличении коэффициента избытка воздуха обедняется горючая смесь, что приводит к понижению скорости сгорания, мощности и ухудшениюэкономичности двигателя. При слишком обедненной смеси появляются пропуски зажигания, работа двигателя становится неустойчивой и возможна его остановка.Специфические особенности образования рабочей смеси и процесса сгоранияв дизелях определяют возможность быстрого воспламенения и полного сгорания топлива при больших коэффициентах избытка воздуха.
Третьим способом является способ регулирования, применяемый в газовых двигателях — так называемое смешанное регулирование.При смешанном регулировании увеличения или уменьшения мощности в области больших нагрузок достигают путем изменения состава смеси в пределах допустимых значений а, в области малых нагрузок — путем изменения расхода смеси.

Понятие о стехеометрическом соотношении. Процессы сгорания дизельного топлива

Стехиометрическая горючая смесь — смесь окислителя и горючего, в которой окислителя ровно столько, сколько необходимо для полного окисления горючего.[3]

Стехиометрическая смесь обеспечивает полное сгорание топлива без остатка избыточного окислителя в продуктах горения. Исходя из содержнания C и H2 в ДТ можно вычислить, что для сгорания 1 кг дизельного топлива требуется 14,5 кг воздуха, а для сгорания 1 кг чистого метана 17,2 кг воздуха.

Практически же для полного сгорания в цилиндры дизеля подается воздуха СУЩЕСТВЕННО больше, чем теоретически необходимо. Это вызывается тем, что дизельное топливо даже при самых современных технологиях распыления, остается каплей, но не молекулой ( см. иллюстрацию ниже [2]).

Горение этой капли осуществляется только в очень маленьклм «шарике» воздуха вокруг этой капли. Дизелю всегда нехватает воздуха, по этому на дизелях и нет воздушных залонок ( на самом деле иногда бывают, для исключения белого дымления при запуске или для обеспечения каких-то экзотических режимов, связанных с экологическими требованиями.) Собственно из этой вечной нехватки и вытекает качественное регулирование дизельных двигателей.

Для количественного измерения качества горючей смеси используется соотношение воздух-топливо (air fuel ratio, AFR). AFR = масска в кг воздуха/масса в кг толива.

На режимах малой нагрузке AFR высокооборотных транспортных дизелей может доходить до значений 100 и выше. По мере увеличения нагрузки на двигатель AFR стремится приблизится к стехимометрическому, но все равно превышает его. Занчения AFR соответсвующие подлинной стехиометрии можно увидеть на дизелельном двигатели только в короткие моменты, когда подача топлива резко возрасла, а турбонагнетатель не успел еще раскрутится и подать достаточное количество воздуха.

Процессы сгорания композитного топлива в газодизельном двигателе.

При реализации класического газодизельного цикла без возможности регулирования количества подаваемого воздуха в режимах малых нагрузок сгорание газзообразного топлива проходит в условиях сверхобедненной смеси. По причинам снижения температуры сгорания и скорости сгорания такой смеси наблюдается существенное недогорание газового топлива с последующем выбрасывания его излишков через выхлопной коллектор.

Потери тепла вследствии недогорания топлива в двигателе ГД100 [4]

Кроме яления недогорания, при определенных режимах работы ДВС может возникать явление срыва процесса сгорания сильно обедненной газо-воздушной смеси, что выражается в неприятных звуках и скачкообразному изменению тяги.

Реализация системы управления количеством подаваемого воздуха для газодизельных двигателей.

На практике возможно 2 варианта.

Вариант 1. Воздушная заслонка может быть установлена непосредствено перед входным коллектором, реализуя классическую схему количественного регулирования. Преиимуществом данного подхода является возможность работать на смесях благоприятного состава во всем диапазоне рабочих характеристик газодизельного двигателя. Миниусы такого подхода заключаются в резком снижении топливной эффективности двигателя на малых нагрузках.

Вариант 2. Воздушная заслонка установлена в обход турбины для организации сброса избыточного давления с выхода на вход турбонагнетателя. Реализуется специфический вариант смешанного регулирования с элементами количественного и качественного регулирования в зависимости от режима работы газодизельного двигателя.

Сравнительные результаты применения Врианта 1 и Варианта 2 для дизельного двигателя CUMMINS ISF 2.8 на режиме хлостого хода:

РежимыПотребление ДТПотребление газа
Дизель1.5
Вариант 10.53
Вариант 211
Вариант 1 ( без подачи газа)1.7
Вариант 2 ( без подачи газа)1.5

Выводы и практические рекомендации.

Система контроля подаваемого топлива для газодизельных двигателей позволяет снизить количество потребляемого газа необходимого для замещения 1 л ДТ примерно на 20% с 1.2 нм3 на 1 ДТ, до 1 нм3 на 1 л ДТ, что позволяет при сохранении замещения увеличить пробег ТС на одной заправке. Улучшение словий сгорания природит к росту замещещения дизельного топлива газовым на 10-15% по сравнению с обычными газодизельными системами.

Для практического применения в газодизельных двигателях предпочтительным представляется Вариант2, по следующим соображениям:

    Несмотря на невозможность обагащения смеси на режимах с малым давлением наддува, общая топливная эффективность газодизельного двигателя не ухудшается. Подача газа перед турбиной создает идеальную гомогенную смесь, что улучшает условия сгорания. Конструктивная простота исполнения. Большая взрывопожаро безопасность.

Июнь 2020 года. Абакумов А.М.

Наши референции.

Мы более 10 лет разрабатываем газодизельные комплекты. Все болезни роста позади. От 140 до 2100 Л, более 15 типов двигателей.

Вся выгода в одном месте

Федеральные дотации. Региональные льготы. Скидка на газ от ГГМТ

Ставишь пропан ?

Зрарабатываете до 150.000 рублей с одной установки газодизеля. Стань нашим региональным партнером.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector