Векторное управление двигателем алгоритм работы ключей
Векторное управление
Правильно выбранный способ управления электроприводами переменного тока значительно снижает потребление электроэнергии, повышает к.п.д. и дает ощутимый технический и экономический эффект.
Синхронные и асинхронные машины управляются по 2 основным законам: скалярным и векторным. Суть последнего способа – контроль амплитуды и частоты питающего напряжения как при скалярном управлении, а также фазы. То есть, регулируется не только скалярная величина контролируемых характеристик, но и их векторная составляющая.
Векторный способ позволяет изменять скорость вала и момент одновременно, значительно увеличивает точность регулирования во всем диапазоне, уменьшает потери на намагничивание и нагрев, обеспечивает плавное вращения ротора без рывков на небольших скоростях. Метод также позволяет подстраивать момент на валу при переменной нагрузке без изменения частоты вращения.
На схеме представлена типовая схема векторного управления электроприводом, где:
- АД – электрический двигатель.
- БРП – блок регуляторов суммирования входных сигналов и сигналов обратной связи.
- БВП – блок вычисления и преобразования импульсов обратной связи.
- БЗП – задающий блок.
- ДС – датчик скорости вала электродвигателя.
- АИН ШИМ – блок амплитудно-импульсной или широтно-импульсной модуляции частоты питающего напряжения.
Принцип ее работы основан на контроле сцепления магнитных потоков ротора и статора. На блок регуляторов БРП и поступают заданные сигналы момента и потокосцепления и импульсы с контура обратной связи. Далее в задающем блоке БЗП они преобразуются в импульсы, регулирующие работу ШИМ или АИМ. На обмотки электродвигателя поступает напряжение заданной частоты и величины. Датчик скорости ДС считает количество оборотов вала ротора в единицу времени и подает сигнал на блок регуляторов БРП. В нем осуществляется суммирование фазовых составляющих заданных сигналов и импульсов обратной связи. В результате на задающий блок БЗП поступает интегрированный сигнал с учетом фактической скорости и момента на валу электродвигателя.
DIY. Do it yourself.
Электронные ключи DC/AC.
В основе устройства N-канальные полевые транзисторы либо IGBT.
Выполнена гальваническая развязка между цепями управления и силовой частью.
Реализована работа N-канальных транзисторов в верхнем ключе до 2KV.
Возможно использование ключей для коммутации цепей переменного тока.
Инверсия входного сигнала.
Регулируемая задержка переднего фронта входного сигнала.
Генерация импульса заданной длительности по переднему фронту сигнала.
Предусмотрено подключение внешних IGBT сборок или транзисторов.
Заземление схемы выполняется через крепёжные отверстия.
Предусмотрено подключение внешних радиаторов.
Через разъём IDC 10 предусмотрено подключение микроконтроллера.
Электронные ключи Вы можете изготовить самостоятельно, используя схему и печатную плату проекта в altium по данной ссылке или закажите готовое изделие. Если используете данную схему в разработках указывайте ссылки на первоисточник. В архиве gerbers.zip находятся файлы с трассировкой печатной платы. Данный файл подготовлен для размещения на https://www.pcbway.ru/ по расценкам 5USD за 10 штук.
Противопоказаний использовать в верхнем ключе транзисторы N-типа не существует. Но Вы должны обеспечить чтобы напряжение срабатывания на затворе было выше напряжения на стоке. Как правило за Вас эту работу делает драйвер верхнего ключа.
Питание драйвера TC4452 выполнено от преобразователя с гальванической развязкой от исходного напряжения. «Минус» полученного напряжения 12 вольт соединён с истоком транзистора через резистор с нулевым сопротивлением по схеме. В результате на затворе управляющее напряжение будет всегда выше напряжения стока, это значит, что в процессе работы транзистор будет открыт либо закрыт полностью.
В итоге Вы получаете драйвер верхнего ключа на транзисторе N-типа использование которого ограничено напряжением гальванической изоляции преобразователя. Преимуществом является более высокое быстродействие транзисторов N-типа и низкое сопротивление канала сток-исток чему у аналогичных транзистороы P-типа.
Электронные ключи Вы можете изготовить самостоятельно, используя схему и печатную плату, загрузив проект altium по данной ссылке или закажите готовое изделие. Если используете данную схему в разработках указывайте ссылки на первоисточник.
Если у Вас нет необходимости работать с цепями переменного тока и перед Вами не стоит задача предотвратить возврат ОЭДС в истчник питания, один транзистор можно не ставить. В этом случае выходы на плате исток и сток транзистора следует перемкнуть перемычкой.
Драйвер управления тиристорами и транзисторами.
Данная схема является продолжением работы над драйвером управления транзисторами и дополнена функционалом необходимым для включения и выключения тиристоров в цепях постоянного и переменного тока без привзяки к фазе питающего напряжения. Схема и разводка печатной платы доступна по данной ссылке .
Принципиальная схема.
В основе устройства N-канальные полевые транзисторы либо IGBT.
Выполнена гальваническая развязка между цепями управления и силовой частью.
Установлен разъём IDC10 для подключения к микроконтроллеру. Выбор порта осуществляется установкой соответсвующей перемычки.
Реализована работа N-канальных транзисторов в верхнем ключе до 2KV.
Возможно использование ключей для коммутации цепей переменного тока.
Предусмотрено подключение внешних IGBT сборок или транзисторов.
Инверсия входного сигнала.
Регулируемая задержка переднего фронта сигнала.
По переднему фронту формируется импульс заданной длительности.
Генерация коротких импульсов с настраиваемыми длительностью импульса и паузами между ними.
Управление тиристорами.
Использование тиристоров в качестве ключей позволяет управлять силовой нагрузкой значительной мощности, превосходящей возможности большинства транзисторов. Для использования тиристоров в качестве силовых ключей в цепях постоянного и переменного тока прорабатывается схемотехника управления тиристорами.
Если замкнуть катод и анод тиристора, то ток идущий через тиристор снижается до величины меньшей Iвыкл, в результате тиристор закроется. Если снять напряжение с управляющего электрода тиристора, замкнуть ключ соединяющий анод и катод, то после размыкания ключа тиристор будет заперт, ток через него течь не будет.
По спаду управляющего сигнала, формируется импульс запирающий тиристор через замыкание катода и анода тиристора — красный луч. Замыкание анода и катода реализовано через транзисторную пару включенную по схеме нечувствительной к полярности источника питания нагрузки.
На осциллограмме ниже показано как соотносится изменение напряжения на нагрузке — синий луч, к управляющему сигналу — жёлтый луч. Сигнал закрытия транзистора формируется по спаду управляющего сигнала, на осциллограмме курсором показано время в течение которого должен быть замкнут катод и анод тиристора для гарантированного закрытия тиристора. Соответственно схема формирующая управляющий сигнал должна учитывать это время.
Тиристор допускает прохождение тока только в одном направлении, поэтому для работы в цепи переменного тока требуется два тиристора включенных встречно.
Включение тириситора осуществлялось подачей напряжения на его управляющий электрод с импульсного трансформатора B82804A0264A210. При длительности импульса более пятнадцати микросекунд данный импульсный трансформатор греется и после выходит из строя.
По итогам тестирования индуктивных нагрузок в резонансе времени включения в 10 мкс недостаточно, поэтому в итоговой версии драйвера было принято решение вместо импульсного трансформатора использовать ферритовое кольцо с намотанными на нем 50 витками провода UTP с размещением его непосредственно на управляющем электроде тиристора.
Данная техника работы с тиристорами на стадии тестирования, поэтому для полноценной работы с тиристорами требуется две схемы драйвера. Первый на включение с формированием импульса по переднему фронту на включение и второй с генерацией аналогичного импульса инвертированного входного сигнала на выключение. Установка транзисторов на включение через импульсный трансформатор не требуется. Достаточно токов драйвера.
На видео демонстрируется работоспособность схемы в цепи постоянного тока — включение и выключение лампы накаливания 12V и управление нагрузкой в сети 220V с переменным напряжением. На частотах вплоть до 20кГц и работе на нагрузку в 150 ватт нагрев силовых электронных компонентов отсутствует.
Заметки на будущее:
В случае ёмкостной или активной нагрузки рассматриваемая схемотехника включения и выключения тиристоров работает идеально. С индуктивной нагрузкой, если та ещё и в резонансе — сложности. Трудно добиться стабильной работы. Частично помогает снаббер. Гарантированному включению тиристора способствует генерация коротких импульсов. Но в любом случае нужна обратная связь.
Радует что при ошибках оператора вылетают пробки, а не полупроводниковый прибор как это гарантированно случается с транзисторами не зависимо от цены.
Универсальные электронные ключи DC/AC.
В основе устройства N-канальные полевые транзисторы либо IGBT.
Выполнена гальваническая развязка между цепями управления и силовой частью.
Реализована работа N-канальных транзисторов в верхнем ключе до 2KV.
Возможно использование ключей для коммутации цепей переменного тока.
Предусмотрено подключение внешних IGBT сборок или транзисторов.
Заземление схемы выполняется через крепёжные отверстия.
Возможно подключение внешних радиаторов.
Плата 85*42мм на двустороннем текстолите FR4 2мм, толщина фольги 105 мкм.
Электронные ключи Вы можете изготовить самостоятельно, используя схему и печатную плату, загрузив проект diptrace по данной ссылке или закажите готовое изделие. Если используете данную схему в разработках указывайте ссылки на первоисточник.
Противопоказаний использовать в верхнем ключе транзисторы N-типа не существует. Но Вы должны обеспечить чтобы напряжение срабатывания на затворе было выше напряжения на стоке. Как правило за Вас эту работу делает драйвер верхнего ключа.
Питание драйвера TC4452 выполнено от преобразователя с гальванической развязкой от исходного напряжения. «Минус» полученного напряжения 12 вольт соединён с истоком транзистора через резистор с нулевым сопротивлением по схеме. В результате на затворе управляющее напряжение будет всегда выше напряжения стока, это значит, что в процессе работы транзистор будет открыт либо закрыт полностью.
В итоге Вы получаете драйвер верхнего ключа на транзисторе N-типа использование которого ограничено напряжением гальванической изоляции преобразователя. Преимуществом является более высокое быстродействие транзисторов N-типа и низкое сопротивление канала сток-исток чему у аналогичных транзистороы P-типа.
Для приложений может быть критична задержка в распространении сигнала. На осциллограмме далее показана задержка между сигналом с генератора на входе схемы (жёлтый луч) и затвором транзистора (синий луч). Задержка формируется оптроном ACPL-W70L-000E и драйвером управления транзистором TC4452VAT и составляет около 100ns.
В демонстрационном видеоролике показана работа схемы в управлении транзисторными модулями BSM100GB60DLC в цепи переменного тока 220V, но требуется дополнительная установка параллельно внутренним диодам транзисторов внешних, соответсвующей мощности.
Если у Вас нет необходимости работать с цепями переменного тока и перед Вами не стоит задача предотвратить возврат ОЭДС в истчник питания, один транзистор можно не ставить. В этом случае выходы на плате исток и сток транзистора следует перемкнуть перемычкой.
Формы и схема векторного управления
Все существующие на сегодня системы векторного управления работой двигателей можно разделить на две группы:
- Датчиковые. Блок управления работой двигателя имеет с ним обратную связь по скорости, с помощью расположения на валу соответствующих датчиков,
- Бездатчиковые. Это системы, которые работают без датчиков скорости на основном валу.
Датчиковые системы являются более сложными, так как точность контроля составляет 1:10000. Бездатчиковые системы работают на уровне не более 1:100. Все частотники с учетом уровня создаваемых помех устанавливаются в центральных или отдельных шкафах.
Если представить все выше сказанное как наглядную схему, то получится нечто следующее:
Здесь можно видеть такие ключевые компоненты системы управления, как:
- АД – собственно, асинхронный двигатель (объект контроля),
- БРП – логический блок регуляторов для переменных уравнения,
- БВП – логический блок, отвечающий за вычисления по переменным,
- БЗП – блок, задающий значения переменных,
- ДС – датчик скорости на валу двигателя,
- АИН ШИМ – блок амплитудно-импульсной/широтно-импульсной модуляции.
То, что на схеме отображено в виде блоков, на практике является всего лишь параметрическими элементами цепи управления, которая реализуется на микроконтроллере. Соответственно, сам контроллер и сопутствующие исполнительные механизмы монтируются в электрический шкаф. Для правильного монтажа разрабатывается технологическая карта.
Содержание
Для СД и АД принцип векторного управления можно сформулировать следующим образом:
Необходимо определить направление и угловое положение вектора потокосцепления ротора двигателя. Ортогональные оси d,q (в отечественной литературе для асинхронных машин применяют оси x,y) направляют так, что ось d совпадает с направлением вектора потокосцепления ротора. Вектор напряжения статора двигателя регулируют в осях d,q. Составляющая напряжения по оси d регулирует величину тока статора по оси d.
Изменяя ток статора по оси d следует добиваться требуемого значения амплитуды вектора потокосцепления ротора. Ток статора по оси q, контролируемый напряжением по этой оси, определит момент развиваемый двигателем. В таком режиме работы СД и АД подобны двигателю постоянного тока, так по оси d формируется поле машины (обмотка возбуждения для двигателя постоянного тока, т.е. индуктор), а ток по оси q задаёт момент (якорная обмотка двигателя постоянного тока).
Векторное управление может быть реализовано не только при определении направления и углового положения вектора потокосцепления ротора (система «Transvektor»). Практический интерес представляют аналогичные устройства с управлением по вектору главного потокосцепления двигателя, которые в нашей стране стали именоваться векторными системами. Указанные устройства управления имеют свои особенности. Применение вектора потокосцепления ротора теоретически обеспечивает большую перегрузочную способность АД. При использовании устройства управления по вектору главного потокосцепления и стабилизации модуля главного потокосцепления двигателя во всех режимах работы исключается чрезмерное насыщение магнитной системы, упрощается структура управления АД. Для составляющих вектора главного потокосцепления (по осям α, β статора) возможно прямое измерение, например, с помощью датчиков Холла, устанавливаемых в воздушном зазоре двигателя.
Питание АД и СД в режиме векторного управления осуществляется от инвертора, который может обеспечить в любой момент времени требуемые амплитуду и угловое положение вектора напряжения (или тока) статора. Измерение амплитуды и положение вектора потокосцепления ротора производится с помощью наблюдателя (математический аппарат позволяющий восстанавливать неизмеряемые параметры системы).
Для векторного управления асинхронным двигателем следует сначала привести его к упрощенной двухполюсной машине, которая имеет две обмотки на статоре и роторе, в соответствии с этим имеется системы координат связанные со статором, ротором и полем.
Терминологические нюансы [ править | править код ]
Поскольку принцип векторного управления был изобретен в ФРГ, то в русскоязычной литературе нередко встречается термин «векторное регулирование», являющийся калькой с немецкого «Vektorregelung». Такое определение нельзя считать ошибочным, однако по установившемся нормам русского технического языка более правильным будет использование именно термина «векторное управление». Кроме того часто данный метод называют также «принципом ориентирования по полю», что также является буквальным переводом с немецкого «Das Prinzip der Feldorientierung».
Как подключить частотник к асинхронному двигателю?
Используемый для управления частотой напряжения преобразователь зачастую используется для энергоснабжения трёхфазных двигателей. С помощью преобразователя частоты также возможно обеспечить присоединение такого устройства к однофазной сети, предотвратив снижение его рабочей мощности. Этим они значимо выигрывают у конденсаторов, которые при подключении не могут сохранить исходный уровень мощности. Подробней про применение частотника для трехфазника- смотрите здесь.
При подключении частотного преобразователя следует предварительно разместить автоматический выключатель, функционирующий от тока сети по значению равного номинальному (или наиболее близкого к таковому) уровню потребления тока в двигателе. Если используется частотник трёхфазного типа, то соответственно следует воспользоваться трёхфазным автоматом с общим рычагом. Такой вариант обеспечивает быстрое обесточивание всех фаз сразу при замыкании на одной из них.
Ток срабатывания по своим характеристикам должен совпадать с однофазным током электрического двигателя.
В случае же, если для частотного преобразователя свойственно однофазное питание, то следует применить одинарный автомат, который подходит для работы с утроенным однофазным током.
Однако, при любых обстоятельствах установку частотного преобразователя нельзя осуществлять через включение автомата в месте разрыва нулевых или заземляющих проводов. В таких условиях подразумевается только прямое включение автомата.
Дальнейшую настройку преобразователя частоты осуществляют через соединение с контактами электрического двигателя. Используются при этом фазные провода. Но предварительно производится соединение обмоток электрического двигателя по схеме «звезда» или «треугольник».
Работа по той или иной схеме базируется на том, каков тип преобразователя частоты и характер производимого им напряжения.
По стандарту корпус каждого двигателя имеет отметку с двумя значениями, которым может равняться напряжение. Если частотник продуцирует напряжение соответствующее нижней границы, то соединение осуществляется по типу «треугольник». В остальных случаях для использования принцип «звезды».
Месторасположение управляющего пульта, обязательно прилагающегося при покупке частотного преобразователя, следует подбирать тщательно, чтобы обеспечить наибольшее удобство пользования.
Подключения пульта управления осуществляется по схеме обозначенной в прилагаемой к преобразователю инструкции. После рукоятка фиксируется на нулевом уровне, и автомат включается. В этот момент должно наблюдаться свечение светового индикатора.
Для использования частотного преобразователя, следует надавить кнопку «RUN» (она уже запрограммирована надлежащим образом). Далее делается лёгкий поворот рукоятки, провоцирующий старт постепенного вращения электрического двигателя. Если вращение осуществляется в направлении, противоположном необходимому, то следует нажать реверс. После при помощи рукоятки настраивается требуемая частота вращения устройства. При этом следует учитывать, что на корпусе пульта управления зачастую прописаны не уровни частоты вращения двигателя, выражаемые в оборотах в минуту, а частоты, которую имеет питающее напряжение, выражаемое в герцах.
Чтобы ограничить пусковой ток и снизить пусковой момент в момент пуска асинхронного двигателя с уровнем мощности больше 5000Вт, используется подключение типа «звезда-треугольник». До достижения номинала скорости задействуется схема подключения частотного преобразователя «звезда», а после питание осуществляется по схеме «треугольник». В момент переключения уровень пускового тока уменьшается в три раза относительно прямого пуска. При начале работы по второй схеме до момента разгона двигателей ток возрастёт до уровня прямого пуска. Такой варианты наиболее актуален для, имеющих большую маховую массу, позволяя после разгона сбросить нагрузку.
Логично, что использование такой схемы возможно только с двигателями, рассчитанными на подключения обоих типов.
Проведение работы по схеме «звезда-треугольник» всегда чревато резкими скачками уровня тока в противовес плавному нарастанию в условиях прямого пуска. В момент смены соединения скорость резко снижается и увеличить её можно только увеличив силу тока.
Варианты режимов работы векторного управления
Векторное управление подразумевает наличие в звене управления математической модели (далее — ММ) регулируемого электродвигателя. В зависимости от условий эксплуатации электропривода возможно управление электродвигателем как в режимах с обычной точностью, так и в режимах с повышенной точностью отработки задания на скорость или момент.
Точность математической модели электродвигателя
В связи с вышесказанным представляется возможным произвести классификационное разделение режимов управления по точности ММ электродвигателя, используемой в звене управления:
- использование ММ без дополнительных уточняющих измерений устройством управления параметров электродвигателя (используются лишь типовые данные двигателя, введенные пользователем)
- использование ММ с дополнительными уточняющими измерениями устройством управления параметров электродвигателя (то есть активных и реактивных сопротивлений статора/ротора, напряжения и токадвигателя)
Использование датчика скорости электродвигателя
В зависимости от наличия или отсутствия датчика обратной связи по скорости (датчика скорости) векторное управление можно разделить на:
- управление двигателем без датчика скорости — при этом устройством управления используются данные ММ двигателя и значения, полученные при измерении токастатора и/или ротора
- управление двигателем с датчиком скорости — при этом устройством используются не только значения, полученные при измерении токастатора и/или ротораэлектродвигателя (как в предыдущем случае), но и данные о скорости (положении) ротора от датчика, что в некоторых задачах управления позволяет повысить точности отработки электроприводом задания скорости (положения).
Терминологические нюансы [ | ]
Поскольку принцип векторного управления был изобретен в ФРГ, то в русскоязычной литературе нередко встречается термин «векторное регулирование», являющийся калькой с немецкого «Vektorregelung». Такое определение нельзя считать ошибочным, однако по установившемся нормам русского технического языка более правильным будет использование именно термина «векторное управление». Кроме того часто данный метод называют также «принципом ориентирования по полю», что также является буквальным переводом с немецкого «Das Prinzip der Feldorientierung».