В каком году придумали ракетный двигатель - Авто Журнал
Aklaypart.ru

Авто Журнал
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

В каком году придумали ракетный двигатель

Как это работает. Ракетный двигатель

Фото: Объединенная двигателестроительная корпорация

Полеты в космос, одно из самых вдохновляющих достижений человечества, невозможны без ракетного двигателя. С одной стороны, принцип его работы максимально прост, а с другой – всего несколько стран могут похвастаться ракетными двигателями собственного производства.

С момента старта Гагарина и по сей день все российские космонавты поднимаются с поверхности Земли двигателями РД-107/108. Серийное производство этих исключительно надежных двигателей продолжается на самарском предприятии Ростеха «ОДК-Кузнецов». Рассказываем о том, как устроен и работает космический двигатель-долгожитель РД-107/108.

Ранние концепции реактивного движения

Эолипил 150 г. до н.э. был создан как любопытство и никогда не использовался для каких-либо практических механических целей. На самом деле, только после изобретения китайской художницей ракеты фейерверка в 13-м веке практическое использование реактивного двигателя было впервые осуществлено.

В 1633 году Осман Лагари Хасан Челеби использовал ракету в форме конуса, приводимую в движение реактивным двигателем, чтобы взлететь в воздух, и набор крыльев, чтобы скользить обратно к успешной посадке. Однако из-за того, что ракеты неэффективны на низких скоростях для авиации общего назначения, такое использование реактивного двигателя было, по сути, одноразовым трюком. В любом случае его усилия были вознаграждены позицией в Османской армии.

Между 1600-ми и Второй мировой войной многие ученые экспериментировали с гибридными двигателями для приведения в движение самолетов. Многие использовали одну из форм поршневого двигателя — в том числе линейные и роторные и статические радиальные двигатели с воздушным и жидкостным охлаждением — в качестве источника энергии для самолетов.

Ядерные ракетные двигатели (ЯРД)

Этот тип РД в отличие от химических вырабатывает энергию не при сгорании топлива, а в результате нагревания рабочего тела энергией ядерных реакций. ЯРД бывают изотопными, термоядерными и ядерными.

История создания

Конструкция и принцип работы ЯРД были разработаны еще в 50-хх годах. Уже в 70-хх годах в СССР и США были готовы экспериментальные образцы, которые успешно проходили испытания. Твердофазный советский двигатель РД-0410 с тягой в 3,6 тонны испытывался на стендовой базе, а американский реактор «NERVA» должен был устанавливаться на ракету «Сатурн V» до того, как спонсирование лунной программы было остановлено. Параллельно велись работы и над созданием газофазных ЯРД. Сейчас действуют научные программы по разработке ядерных РД, проводятся эксперименты на космических станциях.

Таким образом, действующие модели ядерных ракетных двигателей уже есть, но пока ни один из них так и не был задействован вне лабораторий или научных баз. Потенциал таких двигателей довольно высокий, но и риск, связанный с их использованием, тоже немалый, так что пока они существуют только в проектах.

Устройство и принцип действия

Ядерные ракетные двигатели бывают газо-, жидко- и твердофазными в зависимости от агрегатного состояния ядерного топлива. Топливо в твердофазных ЯРД – это ТВЭЛы, такие же, как в ядерных реакторах. Они находятся в корпусе двигателя и в процессе распада делящегося вещества выделяют тепловую энергию. Рабочее тело – газообразный водород или аммиак – контактируя с ТВЭЛом, поглощает энергию и нагревается, увеличиваясь в объеме и сжимаясь, после чего выходит через сопло под высоким давлением.

Принцип работы жидкофазного ЯРД и его устройство аналогично твердофазным, только топливо находится в жидком состоянии, что позволяет увеличить температуру, а значит и тягу.

Газофазные ЯРД работают на топливе в газообразном состоянии. Обычно в них используется уран. Газообразное топливо может удерживаться в корпусе электрическим полем или же находится в герметичной прозрачной колбе – ядерной лампе. В первом случае возникает контакт рабочего тела с топливом, а также частичная утечка последнего, поэтому кроме основной массы топлива в двигателе должен быть предусмотрен его запас для периодического пополнения. В случае с ядерной лампой утечки не происходит, а топливо полностью изолировано от потока рабочего тела.

Преимущества и недостатки ЯРД

Ядерные ракетные двигатели имеют огромное преимущество в сравнении с химическими – это высокий показатель удельного импульса. Для твердофазных моделей его величина составляет 8000-9000 м/с, для жидкофазных – 14000 м/с, для газофазных – 30000 м/с. Вместе с тем, их использование влечет за собой заражение атмосферы радиоактивными выбросами. Сейчас ведутся работы по созданию безопасного, экологичного и эффективного ядерного двигателя, и главным «претендентом» на эту роль является газофазный ЯРД с ядерной лампой, где радиоактивное вещество находится в герметичной колбе и не выходит наружу с реактивным пламенем.

Разработки ядерных ракетных двигателей в СССР

В СССР проектирование первых ядерных ракетных двигателей велось во второй половине 1950-х годов. Этими работами занимались КБ главных конструкторов А.М. Люльки, С.А. Лавочкина, В.М. Мясищева, М.М. Бондарюка, В.П. Глушко совместно с рядом научно-исследовательских институтов – НИИТП, ЦИАМ, ИАЭ, ВНИИНМ.

Уже летом 1959 года сотрудники НИИТП В.М. Иевлев и Ю.А. Трескин доложили о постановке эксперимента на реакторе ИГР, первый запуск которого состоялся в 1961-м. Конструкции совершенствовались, и в 1975-1989 гг. на реакторе ИВГ-1 была выполнена отработка тепловыделяющих сборок на ресурс в форсированном режиме при температурах до 3100 К и тепловых потоках 20 кВт/см3 (на порядок выше, чем в США).

Читать еще:  Двигатель абк что это

А на стендовом реакторе ядерного двигателя минимальной размерности ИРГИТ проводились запуски при мощности до 60 МВт и температуре 2650 К. В отличие от американских российские ученые использовали более экономичные и эффективные испытания отдельных тепловыделяющих элементов в исследовательских реакторах.

Все это в 1970-1980-е годы позволило в КБ “Салют”, КБ химавтоматики, ИАЭ, НИКИЭТ и НПО “Луч” (ПНИТИ) разрабатывать различные проекты космических ядерных ракетных двигателей и ядерных энергодвигательных установок.

В КБ химавтоматики при научном руководстве НИИТП (за элементы реактора отвечали ФЭИ, ИАЭ, НИКИЭТ, НИИТВЭЛ, НПО “Луч”, МАИ) создавались ЯРД РД 0411 и ядерный двигатель минимальной размерности РД 0410 тягой 40 и 3,6 т соответственно. В результате были изготовлены реактор, “холодный” двигатель и стендовый прототип для проведения испытаний на газообразном водороде.

В отличие от американского, с удельным импульсом не больше 8250 м/с, советский ЯРД за счет более жаростойких и совершенных по конструкции тепловыделяющих элементов и высокой температуры в активной зоне имел этот показатель равным 9100 м/с.

Советский вариант ядерного двигателя (РД-0410) для космического корабля оказался эффективнее, чем американский. Но и у нас революции не случилось

Стендовая база для испытаний ЯРД объединенной экспедиции НПО “Луч” размещалась в 50 км юго-западнее г. Семипалатинск-21. Она начала работать в 1962-м. В 1971-1978 гг. на полигоне испытывались натурные тепловыделяющие элементы прототипов ЯРД. При этом отработанный газ поступал в систему закрытого выброса. Стендовый комплекс для полноразмерных испытаний ядерных двигателей “Байкал-1” находится в 65 км к югу от г. Семипалатинск-21.

С 1970 по 1988 год проведено около 30 “горячих” пусков реакторов. При этом мощность не превышала 230 МВт при расходе водорода до 16,5 кг/с и его температуре на выходе из реактора 3100 К. Все запуски прошли успешно и безаварийно.

Однако, не смотря на несколько лучший результат, чем в США, отечественные разработки ядерного ракетного двигателя на этом также были остановлены, а оборудование законсервировано. В России и в США исследователи в общем-то пришли к одному выводу – идея рабочая, но в текущих реалиях плохо реализуемая.

По большому счету ядерный ракетный двигатель опередил время – более совершенная база, более продвинутые технологи в будущем позволят вернутся к этой идеи с новыми силами. Пока же остается только мечтать о полетах к далеким планетам, также, как и полвека назад.

Плюсы ядерного реактивного двигателя:

  • Значительно эффективнее жидкостного реактивного двигателя в некоторых диапазонах работы
  • Значительно более компактный за счет отсутствия большого объема топлива
  • Значительно более “долгоиграющий”, опять же за счет преимуществ ядерного топлива

Минусы ядерного реактивного двигателя:

  • Скорость истечения реактивной струи, хотя и выше на порядок, чем у ЖРД, все равно слишком мала для серьезного “покорения” космоса
  • Требует серьезной радиационной защиты
  • В случае аварии происходит ядерная катастрофа. По причине сильной остаточной радиации исключен возврат или сброс ядерного ракетного двигателя на Землю.

Сравнение принципов работы жидкостного и ядерного реактивных двигателей

Ядерные ракетные двигатели и ядерные ракетные электродвигательные установки

Часто в общеобразовательных публикациях о космонавтике не различают разницу между ядерным ракетным двигателем (ЯРД) и ядерной ракетной электродвигательной установкой (ЯЭДУ). Однако под этими аббревиатурами скрывается не только разница в принципах преобразования ядерной энергии в силу тяги ракеты, но и весьма драматичная история развития космонавтики.

Драматизм истории состоит в том, что если бы остановленные главным образом по экономическим причинам исследования ЯДУ и ЯЭДУ как в СССР, так и в США продолжились, то полёты человека на марс давно бы уже стали обыденным делом.

Всё начиналось с атмосферных летательных аппаратов с прямоточным ядерным двигателем

Конструкторы в США и СССР рассматривали «дышащие» ядерные установки, способные втягивать забортный воздух и разогревать его до колоссальных температур. Вероятно, этот принцип образования тяги был заимствован от прямоточных воздушно-реактивных двигателей, только вместо ракетного топлива использовалась энергия деления атомных ядер диоксида урана 235.

В США такой двигатель разрабатывался в рамках проекта Pluto[1]. Американцы сумели создать два прототипа нового двигателя — Tory-IIA и Tory-IIC, на которых даже производились включения реакторов. Мощность установки должна была составить 600 мегаватт.

Двигатели, разработанные в рамках проекта Pluto, планировалось устанавливать на крылатые ракеты, которые в 1950-х годах создавались под обозначением SLAM (Supersonic Low Altitude Missile, сверхзвуковая маловысотная ракета).

В США планировали построить ракету длинной 26,8 метра, диаметром три метра, и массой в 28 тонн. В корпусе ракеты должен был располагаться ядерный боезаряд, а также ядерная двигательная установка, имеющая длину 1,6 метра и диаметр 1,5 метра. На фоне других размеров установка выглядела весьма компактной, что и объясняет её прямоточный принцип работы.

Разработчики полагали, что, благодаря ядерному двигателю, дальность полета ракеты SLAM составит, по меньшей мере, 182 тысячи километров.

В 1964 году министерство обороны США проект закрыло. Официальной причиной послужило то, что в полете крылатая ракета с ядерным двигателем слишком сильно загрязняет все вокруг. Но на самом деле причина состояла в значительных затратах на обслуживание таких ракет, тем более к тому времени бурно развивалось ракетостроение на основе жидкостных реактивных ракетных двигателей, обслуживание которых было значительно дешевле.

Читать еще:  Чем смазывать подшипники скольжения двигателя

СССР оставалась верной идеи создания ЯРД прямоточной конструкции значительно дольше, чем США, закрыв проект только в 1985 году [2]. Но и результаты получились значительно весомее. Так, первый и единственный советский ядерный ракетный двигатель был разработан в конструкторском бюро «Химавтоматика», Воронеж. Это РД-0410 (Индекс ГРАУ — 11Б91, известен также как «Ирбит» и «ИР-100»).

В РД-0410 был применён гетерогенный реактор на тепловых нейтронах, замедлителем служил гидрид циркония, отражатели нейтронов — из бериллия, ядерное топливо — материал на основе карбидов урана и вольфрама, с обогащением по изотопу 235 около 80 %.

Конструкция включала в себя 37 тепловыделяющих сборок, покрытых теплоизоляцией, отделявшей их от замедлителя. Проектом предусматривалось, что поток водорода вначале проходил через отражатель и замедлитель, поддерживая их температуру на уровне комнатной, а затем поступал в активную зону, где охлаждал тепловыделяющие сборки, нагреваясь при этом до 3100 К. На стенде отражатель и замедлитель охлаждались отдельным потоком водорода.

Реактор прошёл значительную серию испытаний, но ни разу не испытывался на полную длительность работы. Однако, вне реакторные узлы были отработаны полностью.

Технические характеристики РД 0410

Тяга в пустоте: 3,59 тс (35,2 кН)
Тепловая мощность реактора: 196 МВт
Удельный импульс тяги в пустоте: 910 кгс·с/кг (8927 м/с)
Число включений: 10
Ресурс работы: 1 час
Компоненты топлива: рабочее тело — жидкий водород, вспомогательное вещество — гептан
Масса с радиационной защитой: 2 тонны
Габариты двигателя: высота 3,5 м, диаметр 1,6 м.

Относительно небольшие габаритные размеры и вес, высокая температура ядерного топлива (3100 K) при эффективной системе охлаждения потоком водорода свидетельствует от том, что РД0410 является почти идеальным прототипом ЯРД для современных крылатых ракет. А, учитывая современные технологии получения самоостанавливающегося ядерного топлива, увеличение ресурса с часа до нескольких часов является вполне реальной задачей.

Конструкции ядерных ракетных двигателей

Ядерный ракетный двигатель (ЯРД) — реактивный двигатель, в котором энергия, возникающая при ядерной реакции распада или синтеза, нагревает рабочее тело (чаще всего, водород или аммиак)[3].

Существует три типа ЯРД по виду топлива для реактора:

  • твердофазный;
  • жидкофазный;
  • газофазный.

Наиболее законченным является твердофазный вариант двигателя. На рисунке изображена схема простейшего ЯРД с реактором на твердом ядерном горючем. Рабочее тело располагается во внешнем баке. С помощью насоса оно подается в камеру двигателя. В камере рабочее тело распыляется с помощью форсунок и вступает в контакт с тепловыделяющим ядерным топливом. Нагреваясь, оно расширяется и с огромной скоростью вылетает из камеры через сопло.

В газофазных ЯРД топливо (например, уран) и рабочее тело находится в газообразном состоянии (в виде плазмы) и удерживается в рабочей зоне электромагнитным полем. Нагретая до десятков тысяч градусов урановая плазма передает тепло рабочему телу (например, водороду), которое, в свою очередь, будучи нагретым до высоких температур и образует реактивную струю.

По типу ядерной реакции различают радиоизотопный ракетный двигатель, термоядерный ракетный двигатель и собственно ядерный двигатель (используется энергия деления ядер).

Интересным вариантом также является импульсный ЯРД — в качестве источника энергии (горючего) предлагается использовать ядерный заряд. Такие установки могут быть внутреннего и внешнего типов.

Основными преимуществами ЯРД являются:

  • высокий удельный импульс;
  • значительный энергозапас;
  • компактность двигательной установки;
  • возможность получения очень большой тяги — десятки, сотни и тысячи тонн в вакууме.

Основным недостатком является высокая радиационная опасность двигательной установки:

  • потоки проникающей радиации (гамма-излучение, нейтроны) при ядерных реакциях;
  • вынос высокорадиоактивных соединений урана и его сплавов;
  • истечение радиоактивных газов с рабочим телом.

Ядерная энергодвигательная установка

Учитывая, что какую-либо достоверную информацию о ЯЭДУ по публикациям, в том числе и из научных статей, получить невозможно, принцип работы таких установок лучше всего рассматривать на примерах открытых патентных материалов, хотя и содержащих ноу-хау.

Так, например, выдающимся российским учёным Коротеевым Анатолием Сазоновичем, автором изобретения по патенту [4], приведено техническое решение по составу оборудования для современной ЯРДУ. Далее привожу часть указанного патентного документа дословно и без комментариев.

Сущность предлагаемого технического решения поясняется схемой, представленной на чертеже. ЯЭДУ, функционирующая в двигательно-энергетическом режиме, содержит электроракетную двигательную установку (ЭРДУ) (на схеме для примера представлено два электроракетных двигателя 1 и 2 с соответствующими системами подачи 3 и 4), реакторную установку 5, турбину 6, компрессор 7, генератор 8, теплообменник-рекуператор 9, вихревую трубку Ранка-Хильша 10, холодильник-излучатель 11. При этом турбина 6, компрессор 7 и генератор 8 объединены в единый агрегат — турбогенератор-компрессор. ЯЭДУ оснащена трубопроводами 12 рабочего тела и электрическими линиями 13, соединяющими генератор 8 и ЭРДУ. Теплообменник-рекуператор 9 имеет так называемые высокотемпературный 14 и низкотемпературный 15 входы рабочего тела, а также высокотемпературный 16 и низкотемпературный 17 выходы рабочего тела.

Выход реакторной установки 5 соединен со входом турбины 6, выход турбины 6 соединен с высокотемпературным входом 14 теплообменника-рекуператора 9. Низкотемпературный выход 15 теплообменника-рекуператора 9 соединен со входом в вихревую трубку Ранка-Хильша 10. Вихревая трубка Ранка-Хильша 10 имеет два выхода, один из которых (по «горячему» рабочему телу) соединен с холодильником-излучателем 11, а другой (по «холодному» рабочему телу) соединен со входом компрессора 7. Выход холодильника-излучателя 11 также соединен со входом в компрессор 7. Выход компрессора 7 соединен с низкотемпературным 15 входом в теплообменник-рекуператор 9. Высокотемпературный выход 16 теплообменника-рекуператора 9 соединен со входом в реакторную установку 5. Таким образом, основные элементы ЯЭДУ связаны между собой единым контуром рабочего тела.

Читать еще:  Двигатель d4ea какое масло лить

ЯЭДУ работает следующим образом. Нагретое в реакторной установке 5 рабочее тело направляется на турбину 6, которая обеспечивает работу компрессора 7 и генератора 8 турбогенератора-компрессора. Генератор 8 производит генерацию электрической энергии, которая по электрическим линиям 13 направляется к электроракетным двигателям 1 и 2 и их системам подачи 3 и 4, обеспечивая их работу. После выхода из турбины 6 рабочее тело направляется через высокотемпературный вход 14 в теплообменник-рекуператор 9, где осуществляется частичное охлаждение рабочего тела.

Затем, из низкотемпературного выхода 17 теплообменника-рекуператора 9 рабочее тело направляется в вихревую трубку Ранка-Хильша 10, внутри которой происходит разделение потока рабочего тела на «горячую» и «холодную» составляющие. «Горячая» часть рабочего тела далее следует в холодильник-излучатель 11, где происходит эффективное охлаждение этой части рабочего тела. «Холодная» часть рабочего тела следует на вход в компрессор 7, туда же следует после охлаждения часть рабочего тела, выходящая из холодильника-излучателя 11.

Компрессор 7 производит подачу охлажденного рабочего тела в теплообменник-рекуператор 9 через низкотемпературный вход 15. Это охлажденное рабочее тело в теплообменнике-рекуператоре 9 обеспечивает частичное охлаждение встречного потока рабочего тела, поступающего в теплообменник-рекуператор 9 из турбины 6 через высокотемпературный вход 14. Далее, частично подогретое рабочее тело (за счет теплообмена с встречным потоком рабочего тела из турбины 6) из теплообменника-рекуператора 9 через высокотемпературный выход 16 вновь поступает к реакторной установке 5, цикл вновь повторяется.

Таким образом, находящееся в замкнутом контуре единое рабочее тело обеспечивает непрерывную работу ЯЭДУ, причем использование в составе ЯЭДУ вихревой трубки Ранка-Хильша в соответствии с заявляемым техническим решением обеспечивает улучшение массогабаритных характеристик ЯЭДУ, повышает надежность ее работы, упрощает ее конструктивную схему и дает возможность повысить эффективность ЯЭДУ в целом.

Твердотопливные ракеты: конфигурации

Читая описание для современных твердотопливных ракет, часто можно найти вот такое:

«Ракетное топливо состоит из перхлората аммония (окислитель, 69,6 % по весу), алюминия (топливо, 16 %), оксида железа (катализатор, 0,4 %), полимера (связующей смеси, удерживающей топливо вместе, 12,04 %) и эпоксидный отверждающий агент (1,96 %). Перфорация выполнена в форме 11-конечной звезды в переднем сегменте двигателя и в форме дважды усеченного конуса в каждом из остальных сегментов, включая конечный. Такая конфигурация обеспечивает высокую тягу при розжиге, а затем уменьшает тягу примерно на треть спустя 50 секунд после старта, предотвращая перенапряжение аппарата во время максимального динамического давления». — NASA

Здесь объясняется не только состав топлива, но и форма канала, пробуренного в центре топлива. «Перфорация в виде 11-конечной звезды» может выглядеть вот так:

Твердотопливные двигатели обладают тремя важными преимуществами:

  • простота
  • низкая стоимость
  • безопасность

Но есть и два недостатка:

  • тягу невозможно контролировать
  • после зажигания двигатель нельзя отключить или запустить повторно

Недостатки означают, что твердотопливные ракеты полезны для непродолжительных задач (ракеты) или систем ускорения. Если вам понадобится управлять двигателем, вам придется обратиться к системе жидкого топлива.

«ЭнергияБуран»

В 1974 году было создано НПО «Энергия» (сейчас Ракетно-космическая корпорация «Энергия»), в новую организацию вошло Центральное конструкторское бюро машиностроения (ОКБ-1, переименованное так после смерти Королева), а также КБ «Энергомаш» (бывшее ОКБ-456). Глушко стал главным конструктором «Энергии», название которой, по некоторым данным, он и придумал.

Несмотря на все его усилия, НПО «Энергия» не получило заказ от государства на разработку двигателей под ракету сверхтяжелого класса Н-1 для советской лунной программы. Идеи конструктора были отклонены из-за токсичности предложенных им компонентов топлива. Позже он в своих письмах не оставляет планов покорения Луны, в частности, предлагает руководству страны в течение десяти лет разработать и создать систему доставки космонавтов к естественному спутнику Земли и орбитальный лунный модуль весом 60 тонн, который обеспечит высадку на Луну трех космонавтов. Однако этим планам не суждено сбыться.

В 1976 году внимание Глушко переключается на совсем другую тему — создание челнока «Буран» как ответа на запуски американских многоразовых кораблей «Спейс Шаттл». Отечественная многоразовая система «Энергия — Буран» создавалась под непосредственным руководством Глушко и по его проекту, именно он настоял на облике сверхтяжелой ракеты «Энергия» и предложил вид двигателя первой ступени РД-170. Успешный запуск «Бурана» прошел в ноябре 1988 года в автоматическом режиме.

Кроме двигателей, под руководством Глушко был выполнен ряд ключевых работ по направлению пилотируемой космонавтики. Так, конструктор возглавлял работы по совершенствованию пилотируемых космических кораблей «Союз», им была предложена концепция многомодульной станции «Мир»: НПО «Энергия» выдвинула свои предложения по созданию новых орбитальных станций в 1976 году, эскизный проект «Мира» был готов в 1978 году.

Подготовила Валерия Решетникова

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector