Циклы работы бензинового двигателя
Бензиновый двигатель внутреннего сгорания
Бензиновые двигатели — это класс двигателей внутреннего сгорания, в цилиндрах которых предварительно сжатая топливовоздушная смесь поджигается электрической искрой. Управление мощностью в данном типе двигателей производится, как правило, регулированием потока воздуха, посредством дроссельной заслонки.
Одним из видов дросселя является карбюраторная дроссельная заслонка, регулирующая поступление горючей смеси в цилиндры двигателя внутреннего сгорания. Рабочий орган представляет собой пластину, закрепленную на вращающейся оси, помещённую в трубу, в которой протекает регулируемая среда. В автомобилях управление дросселем производится с места водителя от ноги педалью (на автомобилях старше 10-ти лет). В современных автомобилях нет прямой механической связи между педалью акселератора и дроссельной заслонкой. Заслонка поворачивается с помощью электродвигателя, управляемого электронным блоком управления (ЭБУ, по-народному «Мозгами»). В педальном блоке находится потенциометр, изменяющий свое сопротивление в зависимости от положения педали.
Рабочий цикл четырехтактного бензинового двигателя
1. Рабочий цикл четырехтактного бензинового двигателя
Рабочий цикл двигателя — это комплекс последовательно чередующихся процессов внутри цилиндра, в результате которых энергия топлива преобразуется в механическую работу.
Двигатели, в цилиндрах которых рабочий цикл совершается за два оборота коленчатого вала (за четыре хода поршня), называют четырехтактными. Если рабочий цикл совершается за один оборот коленчатого вала (за два хода поршня), то двигатели называют двухтактными.
Такт впуска (рис. 1, а). При вращения коленчатого вала 8 (за пол-оборота) поршень перемещается от ВМТ к НМТ. При этом впускной клапан 4 открыт, а выпускной клапан 6 закрыт. При движении поршня вниз объем над ним увеличивается, поэтому в цилиндре 2 создается разрежение, равное 0,07 ÷ 0,095 МПа, в результате чего свежая горючая смесь, состоящая из паров бензина и воздуха, засасывается через впускной газопровод 3 в цилиндр. Свежая рабочая смесь в результате соприкосновения с нагретыми деталями и остаточными газами имеет температуру в конце такта впуска 75 ÷ 125°С.
Рисунок 1 — Рабочий цикл четырехтактного одноцилиндрового
а — такт впуска; б — такт сжатия; в — такт расширения (рабочий ход); г — такт выпуска; 1 — поршень; 2 — цилиндр; 3 — газопровод; 4 — впускной клапан; 5 — свеча зажигания; 6 — выпускной клапан; 7— газопровод; 8 — шатун; 9 — коленчатый вал.
Такт сжатия (рис. 1, б). При дальнейшем вращении коленчатого вала поршень перемещается от НМТ к ВМТ. При этом впускной клапан 4 закрывается, а выпускной клапан 6 закрыт. По мере сжатия горючей смеси повышается ее температура и давление. В зависимости от степени сжатия давление в цилиндре в конце такта сжатия может составлять 0,8 ÷ 1,5 МПа, а температура газов — 300 ÷ 450°С.
Такт расширения, или рабочий ход (рис. 1, в). В конце такта сжатия горючая смесь воспламеняется от электрической искры, возникающей между электродами свечи зажигания 5, и быстро сгорает, в результате чего температура и давление образующихся газов резко возрастают и поршень перемещается от ВМТ к НМТ. Максимальное давление газов на поршень при сгорании для карбюраторных двигателей составляет 3,5 ÷ 5 МПа, а температура газов — 2100 ÷ 2400 °С.
При такте расширения шарнирно связанный с поршнем шатун 8 совершает сложное движение и через кривошип передает вращение коленчатому валу. При расширении газы совершают полезную работу, поэтому ход поршня при этом такте коленчатого вала называют рабочим ходом. В конце рабочего хода поршня давление в цилиндре составляет 0,3 ÷ 0,75 МПа, а температура — 900 ÷ 1200 °С.
Рабочий цикл четырехтактного бензинового двигателя
Рабочим циклом двигателя называется периодически повторяющийся ряд последовательных процессов, протекающих в каждом цилиндре двигателя и обусловливающих превращение тепловой энергии в механическую работу. Если рабочий цикл совершается за два хода поршня, т.е. за один оборот коленчатого вала, то такой двигатель называется двухтактным.
Автомобильные двигатели работают, как правило, по четырехтактному циклу, который совершается за два оборота коленчатого вала или четыре хода поршня и состоит из тактов впуска, сжатия, расширения (рабочего хода) и выпуска.
- Как устроен двигатель внутреннего сгорания?
Впуск. По мере того, как коленчатый вал двигателя делает первый полуоборот, поршень перемещается от ВМТ к НМТ, впускной клапан открыт, выпускной клапан закрыт. В цилиндре создается разряжение, вследствие чего свежий заряд горючей смеси, состоящий из паров бензина и воздуха, засасывается через впускной газопровод в цилиндр и, смешиваясь с остаточными отработавшими газами, образует рабочую смесь.
Сжатие . После заполнения цилиндра горючей смесью при дальнейшем вращении коленчатого вала (второй полуоборот) поршень перемещается от НМТ к ВМТ при закрытых клапанах. По мере уменьшения объема температура и давление рабочей смеси повышаются.
Расширение или рабочий ход. В конце такта сжатия рабочая смесь воспламеняется от электрической искры и быстро сгорает, вследствие чего температура и давление образующихся газов резко возрастает, поршень при этом перемещается от ВМТ к НМТ. В процессе такта расширения шарнирно связанный с поршнем шатун совершает сложное движение и через кривошип приводит во вращение коленчатый вал.
При расширении газы совершают полезную работу, поэтому ход поршня при третьем полуобороте коленчатого вала называют рабочим ходом. В конце рабочего хода поршня, при нахождении его около НМТ открывается выпускной клапан, давление в цилиндре снижается до 0.3 — 0.75 МПа, а температура до 950 — 1200 о С.
Выпуск. При четвертом полуобороте коленчатого вала поршень перемещается от НМТ к ВМТ. При этом выпускной клапан открыт, и продукты сгорания выталкиваются из цилиндра в атмосферу через выпускной газопровод.
Рабочий цикл четырехтактного дизеля
Впуск. При движении поршня от ВМТ к НМТ вследствие образующегося разряжения из воздушного фильтра в цилиндр через открытый впускной клапан поступает атмосферный воздух. Давление воздуха в цилиндре составляет 0.08 — 0.095 МПа, а температура 40 — 60°С.
Сжатие. Поршень движется от НМТ к ВМТ; впускной и выпускной клапаны закрыты, вследствие этого перемещающийся вверх поршень сжимает поступивший воздух. Для воспламенения топлива необходимо, чтобы температура сжатого воздуха была выше температуры самовоспламенения топлива. При ходе поршня к ВМТ цилиндр через форсунку впрыскивается дизельное топливо, подаваемое топливным насосом.
Расширение или рабочий ход. Впрыснутое в конце такта сжатия топливо, перемешиваясь с нагретым воздухом, воспламеняется, и начинается процесс сгорания, характеризующийся быстрым повышением температуры и давления. При этом максимальное давление газов достигает 6 — 9 МПа, а температура 1800 — 2000°С. Под действием давления газов поршень перемещается от ВМТ в НМТ — происходит рабочий ход. Около НМТ давление снижается до 0.3 — 0.5 МПа, а температура до 700 — 900 о С.
Выпуск. Поршень перемещается от НМТ в ВМТ и через открытый выпускной клапан отработавшие газы выталкиваются из цилиндра. Давление газов снижается до 0.11 — 0.12 МПа, а температура до 500-700 о С. После окончания такта выпуска при дальнейшем вращении коленчатого вала рабочий цикл повторяется в той же последовательности.
Принцип работы многоцилиндровых двигателей
На автомобилях устанавливают многоцилиндровые двигатели. Чтобы многоцилиндровый двигатель работал равномерно, такты расширения должны следовать через равные углы поворота коленчатого вала (т. е. через равные промежутки времени).
Последовательность чередования одноименных тактов в цилиндрах называют порядком работы двигателя. Порядок работы большинства четырехцилиндровых двигателей 1-3-4-2 или 1-2-4-3. Это означает, что после рабочего хода в первом цилиндре следующий рабочий ход происходит в третьем, затем в четвертом и, наконец, во втором цилиндре. Определенная последовательность соблюдается и в других многоцилиндровых двигателях.
Диаграмма работы двигателя по схеме 1-2-4-3
В термодинамике данный цикл моделируется циклом Отто, в котором полагают, что в процессе при V = const в в.м.т. теплота подводится мгновенно.
Бензиновый двигатель – двигатель с принудительным искровым зажиганием, внешним смесеобразованием и количественным регулированием мощности.
Рабочий цикл такого четырехтактного двигателя протекает следующим образом.
1.Такт впуска. При вращении коленчатого вала (10) (рис.3, а) поршень движется от в.м.т. к н.м.т., создавая разрежение в полости цилиндра над поршнем (4). Впускной клапан (6) открыт, и цилиндр через впускную трубу (7) сообщается с окружающим пространством. Под влиянием разности давлений воздух устремляется в цилиндр. Смешиваясь с топливом, он образует горючую смесь, которая поступает в цилиндр. Заполнение цилиндра (1) горючей смесью продолжается, пока поршень, миновав н.м.т., не начнет двигаться в в.м.т. К этому времени впускной клапан закрывается.
В начале такта впуска над поршнем в объеме пространства сжатия находятся отработавшие газы, оставшиеся от предыдущего цикла. Горючая смесь, заполняя цилиндр, перемешивается с остаточными газами и образует рабочую смесь.
В такте впуска изменение объема и соответствующего ему давления показано на индикаторной диаграмме (рис.4) кривой впуска rа, расположенной ниже линии атмосферного давления.
2. Такт сжатия. При дальнейшем вращении коленчатого вала (10) (рис.3, б) поршень движется от н.м.т. к в.м.т. В это время впускной (6) и выпускной (3) клапаны закрыты, поэтому поршень сжимает находящуюся в цилиндре рабочую смесь. Кривая ас на индикаторной диаграмме (рис.4) иллюстрирует изменение давления в зависимости от уменьшения объема при сжатии рабочей смеси. Во время такта сжатия составные части рабочей смеси хорошо перемешиваются и нагреваются.
Рабочий цикл одноцилиндрового четырехтактного двигателя с искровым зажиганием
а — такт впуска; б — такт сжатия; в — такт расширения; г — такт выпуска
1 — цилиндр; 2— выпускная труба; 3 — выпускной клапан; 4 — поршень; 5 — свеча
зажигания; 6 — впускной клапан; 7 —впускная труба; 8 — карбюратор; 9 — шатун;
10 — коленчатый вал
В конце такта сжатия (рис.3, б) между электродами свечи зажигания (5) происходит электрический разряд и рабочая смесь воспламеняется. Выделение теплоты при сгорании топлива вызывает резкое повышение давления и температуры газов (продуктов сгорания), образующихся в цилиндре. Кривая сz на индикаторной диаграмме (рис.4) показывает нарастание давления в цилиндре при сгорании смеси.
3. Такт расширения. Оба клапана закрыты. Под давлением газов поршень перемещается от в.м.т. к н.м.т. (рис.3, в). Шатун (9) преобразует это движение во вращательное движение коленчатого вала. Таким образом, при расширении газов совершается полезная работа. Кривая zb на рис.4 отображает изменение давления газов в такте расширения.
4. Такт выпуска. Когда поршень подходит к н.м.т., открывается выпускной клапан (3) и отработавшие газы, имеющие избыточное давление, начинают выходить из цилиндра в атмосферу через выпускную трубу (2). Далее поршень движется от н.м.т. к в.м.т. (рис.3, г) и выталкивает из цилиндра отработавшие газы. Такт выпуска на индикаторной диаграмме (рис.4) характеризуется кривой br.
Не нашли то, что искали? Воспользуйтесь поиском:
Лучшие изречения: Увлечёшься девушкой-вырастут хвосты, займёшься учебой-вырастут рога 9687 — | 7618 —
или читать все.
91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.
Отключите adBlock!
и обновите страницу (F5)
очень нужно
Двигатель внешнего сгорания. Принцип работы
«Стирлинг» ‒ как мы уже упоминали, разновидность двигателя внешнего сгорания. Основной принцип его работы заключается в постоянном чередовании нагревания и охлаждения рабочего тела в замкнутом пространстве и получении энергии, благодаря возникающему при этом изменению объёма рабочего тела.
Как правило рабочим телом выступает воздух, но может использоваться водород или гелий. В опытных образцах пробовали двуокись азота, фреоны, сжиженный пропан-бутан и даже воду.
Кстати, вода пребывает в жидком состоянии на протяжении всего термодинамического цикла. А сам «стирлинг» с жидким рабочим телом имеет компактные размеры, высокую удельную мощность и высокое рабочее давление.
Принцип работы ДВС. Рабочие циклы двигателя
На автомобилях устанавливают двигатели внутреннего сгорания (ДВС), у которых топливо сгорает внутри цилиндра. В основу положено свойство газов расширяться при нагревании. Рассмотрим принцип работы двигателя и его рабочие циклы.
Рабочий цикл четырехтактного бензинового двигателя
Рабочим циклом двигателя называется периодически повторяющийся ряд последовательных процессов, протекающих в каждом цилиндре двигателя и обусловливающих превращение тепловой энергии в механическую работу. Если рабочий цикл совершается за два хода поршня, т.е. за один оборот коленчатого вала, то такой двигатель называется двухтактным.
Автомобильные двигатели работают, как правило, по четырехтактному циклу, который совершается за два оборота коленчатого вала или четыре хода поршня и состоит из тактов впуска, сжатия, расширения (рабочего хода) и выпуска.
Принцип работы ДВС (для просмотра нажмите на иконку «Play» на иллюстрации)
Крайние положения поршня, при которых он наиболее удален от оси коленчатого вала или приближен к ней, называются верхней и нижней «мертвыми» точками (ВМТ и НМТ).
- Как устроен двигатель внутреннего сгорания?
Впуск. По мере того, как коленчатый вал двигателя делает первый полуоборот, поршень перемещается от ВМТ к НМТ, впускной клапан открыт, выпускной клапан закрыт. В цилиндре создается разряжение, вследствие чего свежий заряд горючей смеси, состоящий из паров бензина и воздуха, засасывается через впускной газопровод в цилиндр и, смешиваясь с остаточными отработавшими газами, образует рабочую смесь. Сжатие. После заполнения цилиндра горючей смесью при дальнейшем вращении коленчатого вала (второй полуоборот) поршень перемещается от НМТ к ВМТ при закрытых клапанах. По мере уменьшения объема температура и давление рабочей смеси повышаются.
Расширение или рабочий ход. В конце такта сжатия рабочая смесь воспламеняется от электрической искры и быстро сгорает, вследствие чего температура и давление образующихся газов резко возрастает, поршень при этом перемещается от ВМТ к НМТ. В процессе такта расширения шарнирно связанный с поршнем шатун совершает сложное движение и через кривошип приводит во вращение коленчатый вал.
При расширении газы совершают полезную работу, поэтому ход поршня при третьем полуобороте коленчатого вала называют рабочим ходом
. В конце рабочего хода поршня, при нахождении его около НМТ открывается выпускной клапан, давление в цилиндре снижается до 0.3 — 0.75 МПа, а температура до 950 — 1200оС.
Выпуск. При четвертом полуобороте коленчатого вала поршень перемещается от НМТ к ВМТ. При этом выпускной клапан открыт, и продукты сгорания выталкиваются из цилиндра в атмосферу через выпускной газопровод.
Рабочий цикл четырехтактного дизеля
В отличие от бензинового двигателя, при такте «впуск» в цилиндры дизеля поступает чистый воздух. Во время такта «сжатие» воздух нагревается до 600оС. В конце этого такта в цилиндр впрыскивается определенная порция топлива, которое самовоспламеняется.
Впуск. При движении поршня от ВМТ к НМТ вследствие образующегося разряжения из воздушного фильтра в цилиндр через открытый впускной клапан поступает атмосферный воздух. Давление воздуха в цилиндре составляет 0.08 — 0.095 МПа, а температура 40 — 60°С.
Сжатие. Поршень движется от НМТ к ВМТ; впускной и выпускной клапаны закрыты, вследствие этого перемещающийся вверх поршень сжимает поступивший воздух. Для воспламенения топлива необходимо, чтобы температура сжатого воздуха была выше температуры самовоспламенения топлива. При ходе поршня к ВМТ цилиндр через форсунку впрыскивается дизельное топливо, подаваемое топливным насосом.
Расширение или рабочий ход. Впрыснутое в конце такта сжатия топливо, перемешиваясь с нагретым воздухом, воспламеняется, и начинается процесс сгорания, характеризующийся быстрым повышением температуры и давления. При этом максимальное давление газов достигает 6 — 9 МПа, а температура 1800 — 2000°С. Под действием давления газов поршень перемещается от ВМТ в НМТ — происходит рабочий ход. Около НМТ давление снижается до 0.3 — 0.5 МПа, а температура до 700 — 900оС.
Выпуск. Поршень перемещается от НМТ в ВМТ и через открытый выпускной клапан отработавшие газы выталкиваются из цилиндра. Давление газов снижается до 0.11 — 0.12 МПа, а температура до 500-700оС. После окончания такта выпуска при дальнейшем вращении коленчатого вала рабочий цикл повторяется в той же последовательности.
Принцип работы многоцилиндровых двигателей
На автомобилях устанавливают многоцилиндровые двигатели. Чтобы многоцилиндровый двигатель работал равномерно, такты расширения должны следовать через равные углы поворота коленчатого вала (т. е. через равные промежутки времени).
Последовательность чередования одноименных тактов в цилиндрах называют порядком работы двигателя
. Порядок работы большинства четырехцилиндровых двигателей 1-3-4-2 или 1-2-4-3. Это означает, что после рабочего хода в первом цилиндре следующий рабочий ход происходит в третьем, затем в четвертом и, наконец, во втором цилиндре. Определенная последовательность соблюдается и в других многоцилиндровых двигателях.
Диаграмма работы двигателя по схеме 1-2-4-3
Многоцилиндровые двигатели бывают рядными и V-образными. В рядных двигателях цилиндры расположены вертикально, а в V-образных — под углом. Последние характеризуются меньшей габаритной длиной по сравнению с первыми. Современные восьмицилиндровые двигатели выполняют двухрядными с V-образным расположением цилиндров.
Специфические особенности современных моторов
Долговечная работа любого мотора зависит от его надежности. Поэтому для достижения максимальной надежности, было принято использовать индивидуальную катушку зажигания для каждой свечи отдельно. Этого правила поддерживаются как при сборке советских автомобилей, так и при комплектации современных японских агрегатов.
Последнее время, приняли использовать на один цилиндр по 2 клапана на впуск и выпуск. Раньше их было по одному, но за счет увеличения площади отверстий в головках, большой клапан перестал справляться со своевременным закрытием отверстия до начала следующего цикла. Эти изменения сразу сказались, и работа мотора стала нестабильной.
За точное управление дроссельной заслонкой стал отвечать электропривод вместо привычного тросика ведущего от педали акселератора. После появления электропривода, автомобили начали оснащать функцией «Cruise Control», которая очень полезна для дальних дистанций.
Среди систем, которые остались неизменными для большинства двигателей является:
- Охладительная система;
- Система выпуска отработанных газов;
- Система запуска двигателя.
Система охлаждения обычно применяется смешанная. За выпуск отработанных газов в атмосферу отвечает выпускной коллектор на пару с каталитическим конвертером и глушителем. Смазка всех современных автомобилей не имеет отдельного маслоблока и происходит за счет залитого через клапанную крышку масла, прямо в мотор. Запуск агрегата происходит с помощью стартера, который питается от аккумулятора.
Виды моторов
Существует три вида двигателей, встречаемых в транспортных средствах:
Большой популярностью пользуется первый вариант моторов. На некоторые модели автомобилей устанавливают так поршневые двигатели с четырьмя тактами. Вызвана такая популярность тем, что подобные агрегаты стоят дешевле, имеют небольшой вес и подходят для использования практически во всех машинах вне зависимости от производства.
Если говорить простыми словами, то двигатель автомобиля — это особый механизм, способный изменить энергию тепла, превратив ее в механическую энергию, благодаря чему удается обеспечить работу множества элементов конструкции автомобиля, а также его систем.
Изучить принцип действия мотора не составит труда. Например, поршневые ДВС делятся на двух- и четырехтактные агрегаты. Четырехтактными двигатели называют потому, что в одном рабочем цикле элемента поршень двигается четыре раза (такта). Подробнее о том, что представляют собой такты, написано далее.
Карбюраторные и инжекторные двигатели [ править ]
В карбюраторных двигателях процесс приготовления горючей смеси происходит в карбюраторе — специальном устройстве, в котором топливо смешивается с потоком воздуха за счёт аэродинамических сил, вызываемых энергией потока воздуха, засасываемого двигателем.
В инжекторных двигателях впрыск топлива в воздушный поток осуществляют специальные форсунки, к которым топливо подаётся под давлением, а дозирование осуществляется электронным блоком управления — подачей импульса тока, открывающим форсунку или же, в более старых двигателях, специальной механической системой.
Переход от классических карбюраторных двигателей к инжекторам произошёл в основном из-за возрастания требований к чистоте выхлопа (выпускных газов), и установке современных нейтрализаторов выхлопных газов (каталитических конвертеров или просто катализаторов). Именно система впрыска топлива, контролируемая программой блока управления, способна обеспечить постоянство состава выхлопных газов, идущих в катализатор. Постоянство же состава необходимо для нормальной работы катализатора, так как современный катализатор способен работать лишь в узком диапазоне данного состава, и требует строго определённого содержания кислорода. Именно поэтому в тех системах управления, где установлен катализатор, обязательным элементом является лямбда-зонд, он же кислородный датчик. Благодаря лямбда-зонду система управления, постоянно анализируя содержание кислорода в выхлопных газах, поддерживает точное соотношение кислорода, недоокисленных продуктов сгорания топлива, и оксидов азота, которое способен обезвредить катализатор. Дело в том, что современный катализатор вынужден не только окислять не полностью сгоревшие в двигателе остатки углеводородов и угарный газ, но и восстанавливать оксиды азота, а это — процесс, идущий совершенно в другом (с точки зрения химии) направлении. Желательно также ещё раз окислять окончательно весь поток газов. Это возможно лишь в пределах так называемого «каталитического окна», то есть узкого диапазона соотношения топлива и воздуха, когда катализатор способен выполнить свои функции. Соотношение топлива и воздуха в данном случае составляет примерно 1:14,7 по весу (зависит также от соотношения С к Н в бензине), и удерживается в коридоре приблизительно плюс-минус 5 %. Так как одной из труднейших задач является удержание нормативов по оксидам азота, дополнительно необходимо снижать интенсивность их синтеза в камере сгорания. Делается это в основном снижением температуры процесса горения с помощью добавления определённого количества выхлопных газов в камеру сгорания на некоторых критичных режимах (система рециркуляции выхлопных газов).