Aklaypart.ru

Авто Журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

L298n драйвер шагового двигателя схема подключения

Модуль драйвера двигателей L298N и Arduino

Опубликовано 22.04.2014 23:00:00

Модуль драйвера двигателей L298N позволяет управлять двумя моторами постоянного тока, либо шаговым двигателем с потребляемым током до 2 Ампер.

Одной из первых статей на нашем блоге была статья о драйвере двигателей L293D. В данной же статье мы рассмотрим более мощный драйвер двигателей L298N, но уже собранный на платке в виде модуля.

Используемые компоненты (купить в Китае):

• Управляющая плата

Arduino UNO 16U2, либо более дешевая Arduino UNO CH340G,

Arduino Nano CH340G, либо Arduino MEGA 16U2, либо более дешевая Arduino MEGA CH340G,

Arduino PRO mini, либо Arduino Micro

• Плата управления моторами

• Соединительные провода

По функционалу L298N полностью идентична L293D. Мы видим те же управляющие выводы. Чередование разноименных сигналов (высокий логический уровень или низкий) на парах выводов IN1, IN2 и IN3, IN4 задают направление вращения моторов.

Выводы ENABLE A, B (ENA привязан к IN1, IN2. ENB к IN3, IN4) отвечают за раздельное управление каналами. Могут использоваться в двух режимах:

Условно «активном» режиме (рис.а1), когда ими будет управлять контроллер — высокий логический уровень разрешает вращение моторов, низкий запрещает вне зависимости от состояния выводов «IN». Для регулировки скорости моторов, на «EN» выводы подается ШИМ (PWM) сигнал.

Условно «пассивном» режиме (рис.а2), притянув выводы «EN» к высокому уровню (+5V). Для этого на плате, рядом с выводами ENA и ENB находятся штырьки соединенные с +5V. Замыкаем выводы с помощью джамперов . В данном режиме мы не сможем регулировать скорость двигателей, они будут всегда вращаться на полную скорость (за то для управления экономится 2 вывода контроллера). Направление вращения будет задаваться по-прежнему, а вот для остановки в данном варианте, состояние выводов будет уже играть роль. Для остановки нужно будет подавать одноименные сигналы на выводы «IN».

В программных кодах в продолжении статьи все будет прокомментировано.

Клеммник подачи питания и работа стабилизатора.

Назначение элементов и контактов на плате драйвера L298N

Посмотрим внимательнее на модуль и разберемся с его контактами.

Логика микросхемы L298N питается напряжением 5 Вольт. Для этого на модуле предусмотрен стабилизатор напряжения 78M05. На вход этого стабилизатора можно подавать напряжение до 35 В, а на выходе всегда получается 5 В. Рабочий ток у 78M05 небольшой — до 500 мА. Однако, при желании, от него можно питать и саму плату Ардуино Уно, к которой мы будем подключать драйвер.

Тройная клемма снизу отвечает за питание модуля. Самый левый контакт — питание моторов. Сюда можно подавать до 35 В. Средний контакт — земля, которая должна быть общей для модуля и контроллера. Правый контакт имеет двоякую функцию. Если на модуле стоит перемычка питания стабилизатора, то на этом контакте будет +5В и к нему можно ничего не подключать, либо питать от него контроллер. Но если перемычку убрать, то к этому контакту нужно будет непременно подключить +5В от контроллера, чтобы питать драйвер. В нашем примере мы будем ориентироваться именно на вариант без перемычки.

Две другие винтовые клеммы (OUT1/2 и OUT 3/4) служат для подключения моторов. Надо отметить, что моторы постоянного тока неполярные, но от того на какой контакт мотора подается плюс, а на какой минус, зависит направление их вращения.

Наконец, осталось разобраться с контактами управления. Их по три штуки на каждый мотор. Контакты ENA и ENB позволяют управлять моторами с помощью ШИМ сигнала. Если ENA и ENB подключить строго к +5 В, то моторы будут всегда вращаться с максимальной возможной скоростью. Именно для этого режима на модуле предусмотрены две перемычки рядом с ENA и ENB.

С помощью контактов IN1,IN2,IN3,IN4 задаётся режим работы моторов. Таблица режимов для двигателя A имеет вид:

РежимIN1IN2
Вращение в одну сторону1
Вращение в обратную сторону1
Блокировка мотора11
Отключение мотора

Тут следует пояснить последние два режима. Если нам необходимо резко остановить мотор, то выбираем режим блокировки. Для плавной остановки — выбираем «отключение мотора»

Читать еще:  Что такое двигатель гибрид на ниве

3 комментария . Оставить новый

Отличная статья. Небольшое дополнение.

>>В некоторых случаях может получиться так, что при реверсе транзистор успеет открыться, но ему комплементарный ещё не закроется и возникнет короткое замыкание.

Лучше всего это смотреть на схеме моста. Из этой схемы видно, что первоначальная озвученная причина в статье не верна.
Предполагаю, что описанная компенсация нужна из-за наличия инертности тока в моторе (мотор по сути катушка индуктивности) и при резком изменении полярности подключенного тока мы заставляем ток, отдаваемый моторомкатушкой работать против ЭДСпитания. Из-за этого очень сильно просаживается питание и может привести к нестабильностиперезагрузке контроллера.

При этом рекомендация по исправлению дана верно:

>>Чтобы этого избежать, можно прижимать пины к одному напряжению на несколько миллисекунд и только потом выполнять реверс.

Открыв оба нижних или оба верхних транзистора одновременно мы, таким образом, замкнем моторкатушку на саму себя и если дать немного времени (обождать несколько мс.) то побочный ток в результате короткого замыкания исчезнет и просадки не будет.

Здравствуйте! Благодарим вас за добавление ценной информации!

Подключение драйвера двигателя к Arduino

Подключение осуществляется с помощью макетных проводов. Выводы модуля имеют следующие назначения:

VCC 5V — питание микросхемы драйвера двигателей

MOTOR 2.5 — 36V — питание двигателей

IN3, IN4 — управление направлением вращения и скоростью двигателя М2

GND — земля (общий)

IN1, IN2 — управление направлением вращения и скоростью двигателя М1

GND — земля (общий)

M1, M2 — подключение двигателей постоянного тока

Кроме драйвера понадобится контроллер DaVinci, два мотора постоянного тока, соединительные провода и дополнительный источник питания, так как контроллер выдает маленькие токи и на двигатели необходимо подавать питание отдельным источником питания к контакту MOTOR 5-36V.

Управление двигателями производится с помощью ШИМ сигналов через контакты IN1..IN4.
Двигатели подключаются к клеммам М1 и М2. При этом полярность не имеет значения, ее можно поменять программно.

Чтобы начать работу с датчиком его необходимо подключить к микроконтроллеру по схеме ниже.

Программа

Далее необходимо загрузить в микроконтроллер следующую программу, которая будет вращать один из двигателей, меняя направление каждую секунду.

Программу можно усложнить и кроме направления менять еще и мощность.

В итоге сначала мотор вращается с максимальной скоростью, затем замедляется, и повторяет все в обратном направлении.

Для того, чтобы задействовать второй двигатель, необходимо поменять код следующим образом:

Теперь моторы сначала вращаются с небольшой скоростью, затем переходят на увеличенные обороты, и повторяют все в обратном направлении.

Обзор драйвера мотора на L298N

Автор: Сергей · Опубликовано 20.12.2018 · Обновлено 13.04.2020

Одним из самых простых и недорогх способов управления двигателями постоянного тока является модуль L298N Motor Driver с Arduino. Он может контролировать скорость и направление вращения двух двигателей постоянного тока, а так же управлять биполярным шаговым двигателем (типа NEMA 17).

Технические параметры

► Напряжение питания логики модуля: 5 В
► Потребляемый ток встроенной логики: 36 мА
► Напряжение питания драйвера: 5 В – 35 В
► Рабочий ток драйвера: 2 А (пиковый ток 3 А)
► Габариты: 43.5 мм х 43.2мм х 29.4мм

Общие сведения

Основной чип модуля это микросхема L298N, состоящая из двух H-мост (H-Bridge), один для выхода A, второй для выхода B. H-мост широко используется в электронике и служит для изменения вращения двигателем, схема H-моста содержит четыре транзистора (ключа) с двигателем в центре, образуя H-подобную компоновку. Принцип работы прост, при одновременном закрытие двух отдельных транзистора изменяется полярность напряжения, приложенного к двигателю. Это позволяет изменять направление вращения двигателя. На рисунке ниже, показана работа H-мостовой схемы.

Для управления скоростью двигателя постоянного тока используется метод PWM (Широтно-импульсной модуляции).

Модуль L298N содержит разъем для подключения питания, ряд перемычек для настройки модуля, два выхода A и B и разъем управления, которые регулируют скорость и направление вращения, назначение каждого можно ознакомится ниже:

Вывод Vss — питание двигателей, от 5 до 35 В;
Вывод GND — общий вывод заземления;
Вывод Vs — питание для логической схемы;
Перемычка ENA — используются для управления скоростью двигателя A;
Вывода IN1 и IN2 — используются для управления направлением вращения двигателя A;
Вывода IN3 и IN4 — используются для управления направлением вращения двигателя B;
Перемычка ENB — используются для управления скоростью двигателя B;
Выходы OUT1 и OUT2 — разъем для двигателя A;
Выходы OUT3 и OUT4 — разъем для двигателя B;

Читать еще:  Шумит двигатель при больших оборотах

Принципиальная схема модуля L298N

Питание модуля.
Питание модуля L298N осуществляется через трех контактный разъем, шагом 3,5 мм:
Vs — источник питания двигателей, 3B — 35B
GND — земля
Vss — источник питания модуля, 4,5В — 5,5В
Фактически у модуля L298N, есть два контакта питания, а именно. «Vss» и «Vs». От «Vs» питаются двигатели с допустимым напряжением от 5 В до 35 В, а от «Vss» питается логическая схема модуля 4,5В до 5,5В. На плате установлен встроенный стабилизатор напряжения на 5 Вольт (78M05), его можно включить или отключить с помощью перемычки. Когда перемычка установлена, стабилизатор включен и питает логику модуля (Vss) от источника питания двигателя (Vs). При включенном стабилизаторе, вход «Vss» работает как выход и обеспечивает 5В с током 0,5 А. Когда перемычка убрана, стабилизатор отключен и необходимо отдельно подключить питание 5 Вольт на вход Vss.

Внимание! Нельзя установить перемычку, если напряжение двигателя ниже 12 Вольт.

Падение напряжения L298N
Падение напряжения драйвера L298N составляет около 2 В, это связано с внутренним падением напряжения в транзисторах в цепи H-мосте. Таким образом, если мы подключим 12 В к источнику питания двигателя, то двигатели получат напряжение около 10 В. Это означает, что двигатель на 12 В не будет работать с максимальной скоростью, для получения максимальной скорости, напряжение поданное на двигателя должен быть выше напряжения (2 В), чем потребность в фактическом напряжении двигателя. Учитывая падение напряжения на 2 В, если вы используете двигатели 5 В, вам необходимо обеспечить питание 7 В. Если у вас 12-ваттные двигатели, то напряжение питания вашего двигателя должно составлять 14 В.

Управления скоростью
Разъемы управления скоростью ENA и ENB используются для включения и выключения управления скоростью двигателей. Когда перемычка установлена, двигатель вращается с максимальной скоростью. Если необходимо управлять скоростью двигателей, необходимо убрать перемычку и подключить выводы к контактам с поддержкой PWM на Arduino.

Подключение L298N к Arduino (коллекторный двигатель)

Необходимые детали:
Arduino UNO R3 x 1 шт.
► Драйвер мотора на L298N (5-35V, 2A) x 1 шт.
► Коллекторный двигатель x 2 шт.
► Комплект проводов DuPont 2.54 мм, 20 см x 1 шт.

Подключение:
Первым делом необходимо подключить источник питания 12B к двигателям, в примере используется распространенные двигатель постоянного тока, рассчитанные на 3B . . . 12B (применяемые в робототехнике). Учитывая внутреннее падение напряжения на микросхеме L298N, двигатели получат 10 В и будут вращаться не в полную силу.
Далее, нужно подключить 5 вольт на логическую схему L298N, для этого воспользуемся встроенным стабилизатором напряжения, который работает от источника питания двигателя, поэтому, перемычка EN должна быть установлена.
Теперь осталось подключить управляющие провода ENA, IN1, IN2, IN3, IN4 и ENB к шести цифровым выводам Arduino 9, 8, 7, 5, 4 и 3. Обратите внимание, что выводы Arduino 9 и 3 поддерживают ШИМ. Теперь, подключаем двигатели, один к клемме A (OUT1 & OUT2), а другой к клемме B (OUT3 & OUT4). Принципиальная схема подключения приведена ниже.

Осталось подключить Arduino к источнику питания и загрузить скетч.

Распиновка микросхемы L298 (вид сверху)

  • 1 x микросхема моста L298
  • 1 x двигатель постоянного тока
  • 1 x Arduino Mega 2560
  • 1 x макетная плата
  • 10 x перемычка

Комплектующие для эксперимента управления двигателем постоянного тока с помощью Arduino Схема включения микросхемы L298 для управления двумя электродвигателями

Схема выше показывает, как подключить микросхему L298 для управления двумя электродвигателями. Для управления каждым двигателем у микросхемы есть по три вывода: вход 1 (IN1), вход 2 (IN2) и включение A (EN A) для двигателя 1, и вход 3 (IN3), вход 4 (IN4) и включение B (EN B) для двигателя 2.

Читать еще:  Вода в поддоне двигателя причины камаз

Поскольку в данном руководстве мы будем управлять только одним электродвигателем, то мы подключим Arduino к выводам IN1 (вывод 5), IN2 (вывод 7) и EN A (вывод 6) микросхемы L298. Выводы 5 и 7 цифровые, то есть для вращения двигателя в заданную сторону на эти выводы необходимо подавать неизменяющиеся в времени сигналы логического нуля или единицы. В то время, как на вывод 6 необходимо подавать широтно-импульсно-модулированный (ШИМ) сигнал, который управляет скоростью вращения двигателя.

Следующая таблица показывает, в каком направлении будет вращаться электродвигатель в зависимости от логических уровней на входах IN1 и IN2.

Выбор направления вращения двигателя при работе с микросхемой L298

IN1IN2Двигатель
остановлен
1вращение вперед
1вращение назад
11остановлен

В таблице ниже приведено описание подключения микросхемы L298 к нашей плате Arduino Mega 2560.

Подключение микросхемы L298 к плате Arduino

Выводы L298Выводы ArduinoНазначение
IN1вывод 8выбор направления вращения двигателя
IN2вывод 9
EN AШИМ вывод 2управление скоростью вращения двигателя

Для установки значений на выводах 8 и 9 платы Arduino мы будем использовать функцию digitalWrite() , а для установки занчений на выводе 2 – функцию analogWrite() .

Ниже показана фотография стенда, собранного для проведения эксперимента.

Стенд для проведения эксперимента по управлению двигателем постоянного тока с помощью Arduino и микросхемы Н-моста L298

Как подключить моторчик к Arduino

Для этого занятия нам потребуется:

  • плата Arduino Uno / Arduino Nano / Arduino Mega;
  • мотор постоянного тока (Motor DC);
  • транзистор полевой/биполярный;
  • драйвер двигателей L298N;
  • провода «папа-папа», «папа-мама».

Перед выбором способа управления двигателем от Arduino Uno r3, уточните на какое напряжение рассчитан ваш моторчик. Если питание требуется более 5 Вольт, то следует использовать транзистор или драйвер. Распиновка транзисторов может отличаться от приведенного примера (следует уточнить распиновку для своего типа). Драйвер L298N позволит не только включать мотор, но и изменять направление вращения.

Скетч. Подключение мотора напрямую


Схема. Управление моторчиком от Ардуино напрямую
Подключение мотора к Ардуино напрямую — самый простой вариант включения вентилятора на Arduino или машинки. Команда для включения двигателя не отличается, от команды при подключении светодиода к микроконтроллеру. Функция digitalWrite включает/выключает подачу напряжения на цифровой порт, к которому подключен двигатель постоянного тока. Соберите схему и загрузите программу.

Пояснения к коду:

  1. для подключения мотора без драйвера можно использовать любой порт;
  2. если двигатель не включается, то, возможно, не хватает силы тока на цифровом выходе, подключите двигатель через транзистор к порту 3,3V или 5V.

Скетч. Подключение мотора через транзистор

Подключение мотора через транзистор к Ардуино потребуется, если двигатель никак не хочет включаться от платы напрямую, то следует использовать порт 5 Вольт на микроконтроллере или внешний источник питания. Транзистор будет играть роль ключа, замыкая/размыкая электрическую цепь. Сам транзистор управляется цифровым портом. Соберите схему, как на картинке и загрузите программу.


Подключение FA-130 мотора постоянного тока — Motor DC Arduino void setup() < pinMode(13, OUTPUT); // объявляем пин 13 как выход >void loop() < digitalWrite(13, HIGH); // включаем мотор delay(1000); // ждем 1 секунду digitalWrite(13, LOW); // выключаем мотор delay(1000); // ждем 1 секунду >

Пояснения к коду:

  1. при необходимости можно подключить два мотора FA-130 к Ардуино;
  2. в зависимости от характеристик, двигатель подключается к 3,3 или 5 Вольтам.

Скетч. Подключение мотора через драйвер


Схема подключения двух моторов через драйвер l298n
Подключение мотора к Ардуино через драйвер L298N или Motor Shield L293D позволит менять направление вращения ротора. Но для использования данных модулей потребуется установить соответствующие библиотеки для Ардуино. В примере мы использовали схему подключения двигателя с помощью модуля L298N. Соберите схему, как на картинке ниже и загрузите следующий скетч с использованием.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector