Характеристики универсального коллекторного двигателя - Авто Журнал
Aklaypart.ru

Авто Журнал
8 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Характеристики универсального коллекторного двигателя

Универсальный коллекторный двигатель

Универсальный коллекторный двигатель (УКД) — разновидность коллекторной машины постоянного тока, которая может работать и на постоянном, и на переменном токе. Получил большое распространение в ручном электроинструменте и в некоторых видах бытовой техники из-за малых размеров, малого веса, лёгкости регулирования оборотов, относительно низкой цены.

Краткая характеристика устройства

Специалисты привыкли называть коллекторным двигателем те электрические машины, где переключатель тока и датчик ротора — это один и тот же элемент. Именно он обеспечивает надёжное соединение разных цепей в неподвижном отсеке агрегата с ротором.

Его конструкция состоит из мощных щёточек (это специфические контакты скользящего типа, которые расположены возле вращающейся части мотора) и коллектора (эта деталь установлена производителем на движимом узле механизма).

К основным преимуществам такого элемента можно смело отнести то, что высококачественный двигатель прост в уходе и эксплуатации, поддаётся ремонту и имеет большой рабочий ресурс. Среди недостатков сами производители выделяют то, что агрегат имеет небольшой вес и большой процент КПД. Конечно, чаще всего два этих показателя являются положительными, но не в этой ситуации.

Сочетание быстроходности (может достигать нескольких тысяч оборотов в минуту) и низкой массы чревато тем, что для нормальной эксплуатации потребителю нужно дополнительно приобретать хороший редуктор. Если же машина будет перестроена на меньшую скорость, то уровень КПД может серьёзно упасть, из-за чего возникают проблемы с качественным охлаждением.

Принцип работы с переменным током

Для работы с переменным током используют принцип последовательного возбуждения обмоток. Такая схема позволяет подсоединять обмотки статора последовательно с обмотками ротора (как описывалось выше). И по ним всегда будет двигаться ток одной и той же фазы. Возникающие магнитные силы также будут вращать ротор в одном направлении.

Благодаря этому виду подключения смена полюсов магнитных полей на обмотках выполняется практически одновременно, а значит итоговый момент будет также иметь одно направление.

Главное преимущество такой схемы — это большой максимальный момент. С другой стороны, возникают большие обороты на холостом ходу, способные повредить мотор при включении без нагрузки.

Однако если подключить к переменному источнику питания стандартный коллекторный мотор, то он не будет работать, так как будут возникать переменные магнитные поля и вызывать сильные потери в магнитопроводе из-за вихревых токов Фуко.

Чтобы избежать этих потерь, статор изготавливают из набора специальных изолированных тонких пластин, а обмотку разделяют на секции. Таким способом удается эффективно бороться с перемагничиванием. Для уменьшения искрения и воздействия электродвижущей силы двигатель оснащается щётками, которые обладают высоким сопротивлением.

Чтобы поменять направление вращение надо перемкнуть (переплюсовать) обмотки либо ротора, либо статора. При работе с переменным источником, общий КПД будет гораздо ниже.

  • 1 Разновидности
    • 1.1 Коллекторный электродвигатель постоянного тока
    • 1.2 Универсальный коллекторный электродвигатель
      • 1.2.1 Особенности конструкции
      • 1.2.2 Достоинства и недостатки
        • 1.2.2.1 Сравнение с коллекторным двигателем постоянного тока
        • 1.2.2.2 Сравнение с асинхронным двигателем
      • 1.2.3 Аналоги бесколлекторного узла
  • 2 См. также
  • 3 Ссылки, примечания

Коллекторный электродвигатель постоянного тока [ править ]

Самые маленькие двигатели данного типа (единицы Ватт) содержат в корпусе:

  • трёхполюсной ротор на подшипниках скольжения;
  • коллекторный узел из двух щёток — медных пластин;
  • двухполюсной статор из постоянных магнитов.

Применяются, в основном, в детских игрушках (рабочее напряжение 3-9 вольт).

Более мощные двигатели (десятки Ватт), как правило, имеют

  • многополюсный ротор на подшипниках качения;
  • коллекторный узел из четырёх графитовых щёток;
  • четырёхполюсный статор из постоянных магнитов.

Именно такой конструкции большинство электродвигателей в современных автомобилях (рабочее напряжение 12 или 24 Вольт): привод вентиляторов систем охлаждения и вентиляции, «дворников», насосов омывателей.

Двигатели мощностью в сотни Ватт, в отличие от предыдущих, содержат четырёхполюсный статор из электромагнитов. Обмотки статора могут подключаться несколькими способами:

  • последовательно с ротором (так называемое последовательное возбуждение),
    • преимущество: большой максимальный момент,
    • недостаток: большие обороты холостого хода, способные повредить двигатель.
  • параллельно с ротором (параллельное возбуждение)
    • преимущество: большая стабильность оборотов при изменении нагрузки,
    • недостаток: меньший максимальный момент
  • часть обмоток параллельно с ротором, часть последовательно (смешанное возбуждение)
    • до некоторой степени совмещает достоинства предыдущих типов, пример — автомобильные стартеры.
  • отдельным источником питания (независимое возбуждение)
    • характеристика аналогична параллельному подключению, однако обычно может регулироваться. Пример — тяговые двигатели некоторых электровозов.
Читать еще:  Двигатель боинга 737 принцип работы

Общие достоинства коллекторных двигателей постоянного тока — простота изготовления, эксплуатации и ремонта, достаточно большой ресурс.

К недостаткам можно отнести то, что эффективные конструкции (с большим КПД и малой массой) таких двигателей являются низкомоментыми и быстроходными (сотни и тысячи оборотов в минуту), поэтому для большинства приводов (кроме вентиляторов и насосов) необходимы редукторы. Это утверждение не вполне верно, но обоснованно. Электрическая машина, построенная на низкую скорость, вообще имеет заниженный КПД и связанные с ним проблемы охлаждения. Скорее всего проблема такова, что изящных решений для неё нет.

Универсальный коллекторный электродвигатель [ править ]

Универсальный коллекторный электродвигатель (УКД) — разновидность коллекторной машины постоянного тока, которая может работать и на постоянном, и на переменном токе. Получил большое распространение в ручном электроинструменте и в некоторых видах бытовой техники из-за малых размеров, малого веса, лёгкости регулирования оборотов, относительно низкой цены. Широко использовался на железных дорогах Европы и США как тяговый электродвигатель.

Особенности конструкции [ править ]

Строго говоря, универсальный коллекторный электродвигатель является коллекторным электродвигателем постоянного тока с последовательно включенными обмотками возбуждения (статора), оптимизированным для работы на переменном токе бытовой электрической сети. Такой тип двигателя независимо от полярности подаваемого напряжения вращается в одну сторону, так как за счёт последовательного соединения обмоток статора и ротора смена полюсов их магнитных полей происходит одновременно и результирующий момент остаётся направленным в одну сторону. На самом деле там есть небольшой фазовый сдвиг, обуславливающий появление против направленного момента, но он невелик, симметрирование обмоток не только улучшает условия коммутации, но и уменьшает этот момент. (М. П. Костенко, «Электрические машины»). Для нужд железных дорог строились специальные подстанции переменного тока низкой частоты — 16 Гц в Европе, в США же частота 25 Гц была одной из стандартных (наряду с 60 Гц) до 50-х годов XX века. В 50-х годах XX века германо-французскому консорциуму производителей электрических машин удалось построить однофазную тяговую машину промышленной частоты (50 Гц). По данным М. П. Костенко «Электрические машины», электровоз с однофазными коллекторными машинами на 50 Гц испытывался в СССР, где получил восторженно-отрицательную оценку специалистов. [источник не указан 2446 дней] ).

Для возможности работы на переменном токе применяется статор из магнитно-мягкого материала, имеющего малый гистерезис (сопротивление перемагничиванию). Для уменьшения потерь на вихревые токи статор выполняют наборным из изолированных пластин. Подмножеством коллекторных машин переменного тока (КМПТ) являются машины «пульсирующего тока», полученного путем выпрямления тока однофазной цепи без сглаживания пульсаций (железная дорога).

Особенностью (в большинстве случаев — достоинством) работы такого двигателя именно на переменном токе (а не на постоянном такого же напряжения) является то, что в режиме малых оборотов (пуск и перегрузка) индуктивное сопротивление обмоток статора ограничивает потребляемый ток и соответственно максимальный момент двигателя (оценочно) до 3-5 от номинального (против 5-10 при питании того же двигателя постоянным током). Для сближения механических характеристик у двигателей общего назначения может применяться секционирование обмоток статора — отдельные выводы (и меньшее число витков обмотки статора) для подключения переменного тока.

Сложной проблемой является вопрос коммутации мощной коллекторной машины переменного тока. В момент коммутации (прохождение секцией нейтрали) сцепленное с секцией якоря (ротора) магнитное поле меняет свое направление на противоположное, что вызывает генерацию в секции так называемой реактивной ЭДС. Так обстоит дело в случае с постоянным током. В КМПТ реактивная ЭДС также имеет место. Но так как якорь (ротор) находится в пульсирующем во времени магнитном поле статора, в коммутируемой секции дополнительно имеет место ещё и трансформаторная ЭДС. Её амплитуда будет максимальна в момент пуска машины, пропорционально снижаться по мере приближения к скорости синхронизма (в точке синхронизма она обратится в нуль) и далее по мере разгона машины вновь будет пропорционально возрастать. Проблема коммутации КМПТ может быть решена следующим образом:

  • Стремление при проектировании к одновитковой секции (уменьшение потока сцепления).
  • Увеличение активного сопротивления секции. Наиболее перспективными по данным М. П. Костенко являются резисторы в «петушках» коллекторых пластин, где они хорошо охлаждаются.
  • Активная подшлифовка коллектора щётками максимальной твёрдости (высокий износ) подгорающего коллектора из-за тяжелых условий коммутации; и максимально возможного сопротивления как средство гашения реактивной и трансформаторной ЭДС коммутируемой секции.
  • Использование добавочных полюсов с последовательными обмотками для компенсации реактивной ЭДС и параллельной — для компенсации трансформаторной ЭДС. Но так как величина трансформаторной ЭДС представляет собой функцию от угловой скорости (якоря) ротора и тока намагничивания машины, то такие обмотки нуждаются в системе подчинённого регулирования, не разработанной по сегодняшний день.
  • Применение питающих цепей низкой частоты. Популярные частоты 16 и 25 Гц.
Читать еще:  В оку поставили двигатель от ямахи

Реверсирование УКД осуществляется переключением полярности включения обмоток только статора или только ротора.

Достоинства и недостатки [ править ]

Сравнение приведено для случая подключения к бытовой однофазной электрической сети 220 вольт 50 Гц. и одинаковой мощности двигателей. Разница в механических характеристиках двигателей («мягкость-жёсткость», максимальный момент) может быть как достоинством, так и недостатком в зависимости от требований к приводу.

Сравнение с коллекторным двигателем постоянного тока [ править ]

Достоинства:

  • Прямое включение в сеть, без дополнительных компонентов (для двигателя постоянного тока требуется, как минимум, выпрямление).
  • Меньший пусковой (перегрузочный) ток (и момент), что предпочтительнее для бытовых устройств.
  • Проще управляющая схема (при её наличии) — тиристор (или симистор) и реостат. При выходе из строя электронного компонента двигатель (устройство) остаётся работоспособным, но включается сразу на полную мощность.
  • Меньший общий КПД из-за потерь на индуктивность и перемагничивание статора.
  • Меньший максимальный момент (может быть недостатком).
Сравнение с асинхронным двигателем [ править ]

Достоинства:

  • Быстроходность и отсутствие привязки к частоте сети.
  • Компактность (даже с учётом редуктора).
  • Больший пусковой момент.
  • Автоматическое пропорциональное снижение оборотов (практически до нуля) и увеличение момента при увеличении нагрузки (при неизменном напряжении питания) — «мягкая» характеристика.
  • Возможность плавного регулирования оборотов (момента) в очень широком диапазоне — от ноля до номинального значения — изменением питающего напряжения.
  • Нестабильность оборотов при изменении нагрузки (где это имеет значение).
  • Наличие щёточно-коллекторного узла и в связи с этим:
    • Относительно малая надёжность (срок службы: тяжёлые условия коммутации обуславливают использование максимально твердых щёток, что снижает ресурс).
    • Сильное искрение на коллекторе из-за коммутации переменного тока и связанные с этим радиопомехи.
    • Высокий уровень шума.
    • Относительно большое число деталей коллектора (и, соответственно, двигателя).

Следует отметить, что в современных бытовых устройствах ресурс электродвигателя (щёточно-коллекторного узла) сопоставим с ресурсом рабочих органов и механических передач.

Двигатели (УКД и асинхронный) одной и той же мощности, независимо от номинальной частоты асинхронного двигателя, имеют разную механическую характеристику:

  • УКД — «мягкая» характеристика, момент прямо, а обороты обратно пропорциональны нагрузке на валу (потребляемой мощности) — практически линейно — от режима холостого хода до режима полного торможения. Номинальный момент выбирается примерно в 3-5 раз меньшим максимального. Обороты холостого хода ограничиваются только потерями в двигателе и могут разрушить мощный двигатель при включении его без нагрузки.
  • Асинхронный двигатель — «вентиляторная» характеристика — двигатель поддерживает близкую к номинальной частоту вращения, резко (десятки процентов) увеличивая момент при незначительном повышении нагрузки на валу и снижении оборотов (единицы процентов). При значительном снижении оборотов (до точки критического момента) момент двигателя не только не растёт, а падает до нуля, что вызывает полную остановку. Обороты холостого хода постоянны и слегка превышают номинальные.
  • Однофазный асинхронный двигатель предлагает дополнительный «букет» проблем, связанных с запуском, так как в нормальных условиях пускового момента не развивает. Пульсирующее во времени магнитное поле однофазного статора математически разлагается на два противофазных поля, делающих невозможным пуск без различных ухищрений:
    • расщеплённый паз
    • создающая искусственную фазу ёмкость
    • создающую искусственную фазу активное сопротивление

Вращающееся в противофазе поле теоретически снижает максимальный КПД однофазного асинхронного двигателя до 50-60 % из-за потерь в перенасыщенной магнитной системе и активных потерь в обмотках, которые нагружаются токами «противополя». Фактически, на одном валу «сидят» две электрические машины, одна из которых работает в двигательном режиме, а вторая — в режиме противовключения.

Таким образом, в однофазных сетях КМПТ не знает себе конкурентов.

Механическая характеристика в первую очередь и обуславливает (разные) области применения данных типов двигателей.

Из-за малых оборотов, ограниченных частотой сети переменного тока, асинхронные двигатели той же мощности имеют значительно бо́льшие вес и размеры, чем УКД. Если асинхронный двигатель запитывается от преобразователя (инвертора) с высокой частотой, то вес и размеры обеих машин становятся соизмеримы. При этом остаётся жёсткость механической характеристики, добавляются потери на преобразование тока и, как следствие увеличения частоты, повышаются индуктивные и магнитные потери (снижается общий КПД).

Читать еще:  Электрическая схема подключения дизельного двигателя

Аналоги бесколлекторного узла [ править ]

Ближайшим аналогом УКД по механической характеристике является бесколлекторный электродвигатель (вентильный электродвигатель, в котором электронным аналогом щёточно-коллекторного узла является инвертор с датчиком положения ротора (ДПР).

Электронным аналогом универсального коллекторного двигателя является система: выпрямитель (мост), синхронный электродвигатель с датчиком углового положения ротора (датчик угла) и инвертором (другими словами — вентильный электродвигатель с выпрямителем).

Однако из-за применения постоянных магнитов в роторе максимальный момент вентильного двигателя при тех же габаритах будет меньше.

Как регулировать количество оборотов?

Изменения возможны, если используется регулятор оборотов коллекторного двигателя. Различие количества подаваемой электроэнергии может изменить их количество всего на 10 процентов, плюс-минус. Тогда как регулятор оборотов коллекторного двигателя позволяет уменьшать их в разы, и его можно сделать самому или купить. И в любом случае вам необходимо проверить, сможет ли он работать в механизме такой мощности и таких оборотов (сначала теоретически, а потом и на практике). Ведь если регулятор будет слишком слабым, то выйти из строя для него будет плевым делом.

Универсальные коллекторные двигатели

Несмотря на то, что коллекторный узел можно назвать самым слабым местом электродвигателя, подобные модели нашли широкое применение. Все благодаря невысокой цене и легкости управления скоростью. Коллекторные двигатели переменного тока стоят практически в любой бытовой технике, как крупной, так и мелкой. Миксеры, блендеры, кофемолки, строительные фены, даже стиральные машины (привод барабана).

Универсальный коллекторный двигатель работает от постоянного и переменного напряжения

По строению универсальные коллекторные двигатели не отличаются от моделей постоянного тока с обмотками возбуждения. Разница, безусловно есть, но она не в устройстве, а в деталях:

  • Схема возбуждения всегда последовательная.
  • Магнитные системы ротора и статора для компенсации магнитных потерь делают шихтованного типа (единая система без сплошных разрезов).
  • Обмотка возбуждения состоит из нескольких секций. Это необходимо, чтобы режимы работы на постоянном и переменном напряжении были схожи.

Работа коллекторных электродвигателей универсального типа основана на том, что если одновременно (или почти одновременно) поменять полярность питания на обмотках статора и ротора, направление результирующего момента останется тем же. При последовательной схеме возбуждения полярность меняется с очень небольшой задержкой. Так что направление вращения ротора остается тем же.

Достоинства и недостатки

Хотя универсальные коллекторные двигатели активно используются, они имеют серьёзные недостатки:

  • Более низкий КПД при работе на переменном токе (если сравнивать с работой на постоянном такого же напряжения).
  • Сильное искрение коллекторного узла на переменном токе.
  • Создают радиопомехи.
  • Повышенный уровень шума при работе.

Во многих моделях строительной техники

Но все эти недостатки нивелируются тем, что при частоте питающего напряжения в 50 Гц они могут вращаться со скоростью 9000-10000 об/мин. По сравнению с синхронными и асинхронными двигателями это очень много, максимальная их скорость — 3000 об/мин. Именно это обусловило использование этого типа моторов в бытовой технике. Но постепенно они заменяются современными бесщеточными двигателями. С развитием полупроводников их производство и управление становится всё более дешёвым и простым.

FAQ [ править ]

Как обкатать коллекторный мотор [ править ]

Коллекторный мотор нуждается в «обкатке» как и модельные двигатели внутреннего сгорания, только вместо гильзы и поршня, в коллекторном моторе притирки требуют графитовые щётки.

Щетки нового мотора имеют малую площадь соприкосновения с коллектором, из-за этого ток, проходящий через щетки, сильно разогревает их, что может вызвать повреждение, откол или «прикипание» щеток к коллектору. Для того что бы это избежать, необходимо «обкатать» коллекторник следующим образом (применительно к автомодели):

  • «Вывесите» или переверните модель так, чтобы колеса не касались поверхности;
  • Включите модель и запустите двигатель на малых оборотах. Для этого: любым удобным способом зафиксируйте «курок» пульта управления на 15-20% хода влево или вправо относительно «нейтрали»;
  • Дайте поработать коллекторнику в течении 30-40 секунд;
  • После остановки, продуйте двигатель, чтобы убрать остатки отработанного материала щеток;
  • Запустите двигатель еще на 2-3 минуты, согласно пункту 2;
  • Повторно продуйте двигатель.
0 0 голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты