Aklaypart.ru

Авто Журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

График механическая характеристика двигателя постоянного тока

Иcследование механических характеристик электродвигателя постоянного тока с независимым возбуждением

Министерство образования Российской Федерации

НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ

ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Кафедра “Электропривод и автоматизация

промышленных установок”

Иcследование механических характеристик электродвигателя постоянного тока с независимым возбуждением

Методические указания к лабораторной работе №1

для студентов направления 551300 всех форм обучения

Исследование механических характеристик электродвигателя постоянного тока с независимым возбуждением: Лаб. Работа №1 по курсу «Основы электропривода» для студентов направления 551300 всех форм обучения/НГТУ; Сост.:

Изложены электромеханические свойства двигателя постоянного тока с независимым возбуждением в двигательном и тормозном режимах и порядок проведения лабораторной работы.

Подп. к печати 29.03.05. Формат 60х84 1/16. Бумага газетная. Печать офсетная.

Печ. л. 0,75. Уч.-изд. л. 0,6. Тираж 300 экз. Заказ 145

Нижегородский государственный технический университет.

Типография НГТУ. Нижний Новгород, ул. Минина, 24

У Нижегородский государственный

технический университет, 2005

Целью работы является исследование механических характеристик двигателя постоянного тока с независимым возбуждением в двигательном и тормозных режимах.

Основные сведения

Под механической характеристикой электродвигателя постоянного тока с независимым возбуждением понимается зависимость угловой скорости вращения его вала от электромагнитного момента, т. е. w = f(М).

Механические характеристики подразделяются на естественные и искусственные.

Естественной механической характеристикой называют характеристику электродвигателя, полученную при номинальном напряжении на его зажимах, нормальной схеме включения обмоток и отсутствии внешних резисторов в их цепях.

Искусственной механической характеристикой называют характеристику, полученную при условии питания двигателя от сети с напряжением, отличным от номинального, или же при включении в цепь его якоря или в цепь обмотки возбуждения внешних резисторов, а также в случае включения электродвигателя по специальной схеме.

Механические характеристики электродвигателя характеризуются относительным изменением его скорости при изменении момента нагрузки.

,

где w0 — угловая скорость при идеальном холостом ходе;

w — угловая скорость при заданной нагрузке.

Энергетическая диаграмма.

Энергетический процесс рассмотрим на примере двигателя параллельного возбуждения с помощью энергетической диаграммы (рис.2). Двигатель потребляет из сети мощность P1=U(Ia+Iв). Часть этой мощности тратится на покрытие потерь на возбуждение ?Pв=UIв и потери в цепи якоря ?Рэ=Ia 2 ?r.

Рис. 2 — Энергетическая диаграмма

Оставшаяся часть мощности представляет собой электромагнитную мощность якоря Pэм, которая преобразовывается в полную механическую мощность

Полезная механическая мощность P2, отдаваемая двигателем рабочему механизму, меньше мощности Pэм на величину потерь холостого хода ?Pо, включающих потери в стали якоря ?Pст и механические потери Pмех (трение в подшипниках, вентиляционные и т.д.)

Полезная мощность P2 обозначается на заводском щитке машины.

Аналогично происходит энергетический процесс в двигателях других типов.

Двигатели переменного тока и постоянного тока: в чем разница?

Без рубрики

Электродвигатели — это машины, предназначенные для преобразования электрической энергии в механическую. Хотя они доступны во многих вариантах, их можно разделить на две основные категории: двигатели переменного тока и двигатели постоянного тока.

И двигатели переменного тока, и двигатели постоянного тока имеют одинаковую функцию; то есть преобразовывать электрическую энергию в механическую. Однако при выборе двигателя важно знать разницу между двигателями переменного и постоянного тока, поскольку каждый из них имеет разные требования к конструкции, питанию и управлению. В следующей статье обсуждаются различия между двумя типами двигателей, включая основные конструктивные и рабочие характеристики, преимущества и области применения. Купить электрический двигатель можно на сайте https://psnab.ru

Обзор двигателей переменного тока

Как следует из названия, двигатели переменного тока используют переменный ток (AC) для выработки механической энергии. Стандартная конструкция состоит из статора с обмоткой, встроенной по окружности, и свободно вращающейся металлической части (т. е. ротора) в центре.

Читать еще:  Автоматы для пуска двигателя характеристика

Когда ток подается на обмотки статора в двигателе переменного тока, создается вращающееся магнитное поле. Это магнитное поле индуцирует электрический ток внутри электропроводного ротора и, следовательно, образует второе вращающееся магнитное поле. Взаимодействие между первым магнитным полем и вторым магнитным полем заставляет вращаться ротор.

При выборе электродвигателя переменного тока для применения необходимо учитывать два критических фактора:

  • Рабочая скорость (в оборотах в минуту): максимальная скорость, которую может достичь двигатель, рассчитывается по следующей формуле: (60 x частота сети переменного тока в Гц) ÷ количество полюсов двигателя
  • Пусковой крутящий момент, создаваемый двигателем при запуске с нулевой скоростью.

Обзор двигателей постоянного тока

Двигатели постоянного тока используют постоянный ток (DC) с постоянным напряжением для выработки механической энергии. Двигатели постоянного тока состоят из вращающейся обмотки якоря (т. е. Ротора) и статора возбуждения с обмотками, которые образуют набор неподвижных электромагнитов. Другой ключевой компонент двигателя постоянного тока — это коммутатор, прикрепленный к якорю.

Когда ток течет через двигатель постоянного тока, внутри статора возбуждения и вокруг обмотки якоря создается магнитное поле. Взаимодействие между этими двумя магнитными полями создает электромагнитную силу, которая заставляет якорь вращаться. Коммутатор изменяет направление тока в якорь и тем самым позволяет ему продолжать вращение, пока ток течет через систему.

Двигатели постоянного тока могут использоваться для создания различных уровней скорости и крутящего момента. Регулировка уровней напряжения, подаваемого на якорь, или статического тока возбуждения изменяет выходную скорость.

Преимущества двигателей переменного тока перед двигателями постоянного тока

И двигатели переменного тока, и двигатели постоянного тока демонстрируют уникальные преимущества, которые делают их пригодными для различных применений. Ниже мы описываем преимущества, предлагаемые обоими типами двигателей.

К преимуществам двигателей переменного тока можно отнести:

  • Более низкие требования к пусковой мощности
  • Лучший контроль над начальным уровнем тока и ускорением
  • Более широкие возможности настройки для различных требований к конфигурации и изменения требований к скорости и крутящему моменту
  • Повышенная прочность и долговечность

К преимуществам двигателей постоянного тока можно отнести:

  • Более простые требования к установке и обслуживанию
  • Более высокая пусковая мощность и крутящий момент
  • Более быстрое время отклика на пуск / остановку и ускорение
  • Более широкий выбор для различных требований к напряжению

Применение двигателей переменного тока по сравнению с двигателями постоянного тока

Как указано выше, двигатели переменного тока и двигатели постоянного тока подходят для различных применений. В промышленном секторе долговечность, гибкость и эффективность двигателей переменного тока делают их идеальными для использования в приложениях для широкого спектра устройств, включая бытовые приборы, компрессоры, конвейеры, вентиляторы и другое оборудование HVAC, насосы и транспортное оборудование. Более быстрое время отклика и более стабильные уровни крутящего момента и скорости, предлагаемые двигателями постоянного тока, делают их хорошо подходящими для использования в производственном и производственном оборудовании, лифтах, пылесосах и подъемно-транспортном оборудовании.

И двигатели переменного тока, и двигатели постоянного тока играют критически важную роль в производстве электроэнергии в широком спектре промышленных, коммерческих и жилых помещений. Поскольку оба типа двигателей обладают преимуществами и недостатками, важно понимать разницу между ними, чтобы выбрать подходящий для своего предприятия.

Скорость вращения и механические характеристики

Решая уравнение (4) совместно с (6) относительно n, находим уравнение скоростной характеристики n = f(Iа) двигателя:

(7)
M = см × Фδ × Iа.(8)

Определив отсюда значение Iа и подставив его в (7), получим уравнение механической характеристики n = f(M) двигателя:

Читать еще:  Характеристика работы дизельного двигателя
(9)

которое определяет зависимость скорости вращения двигателя от развиваемого момента вращения.

Вид механической характеристики n = f(M) или M = f(n) при U = const зависит от того, как с изменением момента M изменяется поток машины Фδ, и различен для двигателей с различными способами возбуждения. Это же справедливо для скоростных характеристик (смотрите статьи «Двигатели параллельного возбуждения», «Двигатели последовательного возбуждения», «Двигатели смешанного возбуждения»).

Источник: Вольдек А. И., «Электрические машины. Учебник для технических учебных заведений» – 3-е издание, переработанное – Ленинград: Энергия, 1978 – 832с.

Угловая скорость

Следующей немаловажной характеристикой асинхронного электродвигателя является угловая скорость. Для того, чтобы ее вычислить, в первую очередь нужно перевести частоту вращения ротора в другие единицы измерения. Сначала посчитаем количество оборотов в секунду: 2800 / 60 = 46,7.

Далее нужно умножить полученное число на 2 Пи: 46,7 * 2 * 3,14 = 293,276 радиан в секунду. Полученная величина характеризует угловую скорость электродвигателя. Иногда, для удобства вычислений, угловую скорость переводят в градусы. Получаем: 46,7 * 360 = 16812 градусов в секунду.

Устройство и принцип работы

Электродвигатели постоянного тока по конструкции подобны синхронным двигателям переменного тока, с разницей в типе тока. В простых демонстрационных моделях двигателя применяли один магнит и рамку с проходящим по ней током. Такое устройство рассматривалось в качестве простого примера. Современные двигатели являются совершенными сложными устройствами, способными развивать большую мощность.

Главной обмоткой двигателя служит якорь, на который подается питание через коллектор и щеточный механизм. Он совершает вращательное движение в магнитном поле, образованном полюсами статора (корпуса двигателя). Якорь изготавливается из нескольких обмоток, уложенных в его пазах, и закрепленных там специальным эпоксидным составом.

Статор может состоять из обмоток возбуждения или из постоянных магнитов. В маломощных двигателях используют постоянные магниты, а в двигателях с повышенной мощностью статор снабжен обмотками возбуждения. Статор с торцов закрыт крышками со встроенными в них подшипниками, служащими для вращения вала якоря. На одном конце этого вала закреплен охлаждающий вентилятор, который создает напор воздуха и прогоняет его по внутренней части двигателя во время работы.

Принцип действия такого двигателя основывается на законе Ампера. При размещении проволочной рамки в магнитном поле, она будет вращаться. Проходящий по ней ток создает вокруг себя магнитное поле, взаимодействующее с внешним магнитным полем, что приводит к вращению рамки. В современной конструкции мотора роль рамки играет якорь с обмотками. На них подается ток, в результате вокруг якоря создается магнитное поле, которое приводит его во вращательное движение.

Для поочередной подачи тока на обмотки якоря применяются специальные щетки из сплава графита и меди.

Выводы обмоток якоря объединены в один узел, называемый коллектором, выполненным в виде кольца из ламелей, закрепленных на валу якоря. При вращении вала щетки по очереди подают питание на обмотки якоря через ламели коллектора. В результате вал двигателя вращается с равномерной скоростью. Чем больше обмоток имеет якорь, тем равномернее будет работать двигатель.

Щеточный узел является наиболее уязвимым механизмом в конструкции двигателя. Во время работы медно-графитовые щетки притираются к коллектору, повторяя его форму, и с постоянным усилием прижимаются к нему. В процессе эксплуатации щетки изнашиваются, а токопроводящая пыль, являющаяся продуктом этого износа, оседает на деталях двигателя. Эту пыль необходимо периодически удалять. Обычно удаление пыли выполняют воздухом под большим давлением.

Щетки требуют периодического их перемещения в пазах и продувки воздухом, так как от накопившейся пыли они могут застрять в направляющих пазах. Это приведет к зависанию щеток над коллектором и нарушению работы двигателя. Щетки периодически требуют замены из-за их износа. В месте контакта коллектора со щетками также происходит износ коллектора. Поэтому при износе якорь снимают и на токарном станке протачивают коллектор. После проточки коллектора изоляция, находящаяся между ламелями коллектора стачивается на небольшую глубину, чтобы она не разрушала щетки, так как ее прочность значительно превышает прочность щеток.

Читать еще:  Bd30 что за двигатель
Виды
Электродвигатели постоянного тока разделяют по характеру возбуждения:
Независимое возбуждение

При таком характере возбуждения обмотка подключается к внешнему источнику питания. При этом параметры двигателя аналогичны двигателю на постоянных магнитах. Обороты вращения настраиваются сопротивлением обмоток якоря. Скорость регулируют специальным регулировочным реостатом, включенным в цепь обмоток возбуждения. При значительном снижении сопротивления или при обрыве цепи ток якоря повышается до опасных величин.

Электродвигатели с независимым возбуждением запрещается запускать без нагрузки или с небольшой нагрузкой, так как его скорость резко возрастет, и двигатель выйдет из строя.

Параллельное возбуждение

Обмотки возбуждения и ротора соединяются параллельно с одним источником тока. При такой схеме ток обмотки возбуждения значительно ниже тока ротора. Параметры двигателей становятся слишком жесткими, их можно применять для привода вентиляторов и станков.

Регулировка оборотов двигателя обеспечивается реостатом в последовательной цепи с обмотками возбуждения или в цепи ротора.

Последовательное возбуждение

В этом случае возбуждающая обмотка подключается последовательно с якорем, в результате чего по этим обмоткам проходит одинаковый ток. Обороты вращения такого мотора зависят от его нагрузки. Двигатель нельзя запускать на холостом ходу без нагрузки. Однако такой двигатель обладает приличными пусковыми параметрами, поэтому подобная схема используется в работе тяжелого электротранспорта.

Смешанное возбуждение

Такая схема предусматривает применение двух обмоток возбуждения, находящихся парами на каждом полюсе двигателя. Эти обмотки можно соединять двумя способами: с суммированием потоков, либо с их вычитанием. В итоге электродвигатель может обладать такими же характеристиками, как у двигателей с параллельным или последовательным возбуждением.

Чтобы заставить двигатель вращаться в другую сторону, на одной из обмоток изменяют полярность. Для управления скоростью вращения мотора и его запуском используют ступенчатое переключение разных резисторов.

Особенности эксплуатации

Электродвигатели постоянного тока отличаются экологичностью и надежностью. Их главным отличием от двигателей переменного тока является возможность регулировки оборотов вращения в большом диапазоне.

Такие электродвигатели постоянного тока можно также применять в качестве генератора. Изменив направление тока в обмотке возбуждения или в якоре, можно изменять направление вращения двигателя. Регулировка оборотов вала двигателя осуществляется с помощью переменного резистора. В двигателях с последовательной схемой возбуждения это сопротивление расположено в цепи якоря и позволяет уменьшить скорость вращения в 2-3 раза.

Этот вариант подходит для механизмов с длительным временем простоя, так как при работе реостат сильно нагревается. Повышение оборотов создается путем включения в цепь возбуждающей обмотки реостата.

Для моторов с параллельной схемой возбуждения в цепи якоря также применяются реостаты для уменьшения оборотов в два раза. Если в цепь обмотки возбуждения подключить сопротивление, то это позволит повышать обороты до 4 раз.

Применение реостата связано с выделением тепла. Поэтому в современных конструкциях двигателей реостаты заменяют электронными элементами, управляющими скоростью без сильного нагревания.

На коэффициент полезного действия мотора, работающего на постоянном токе, влияет его мощность. Слабые электродвигатели постоянного тока обладают малой эффективностью, и их КПД около 40%, в то время, как электродвигатели мощностью 1 МВт могут обладать коэффициентом полезного действия до 96%.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector