Aklaypart.ru

Авто Журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Газотурбинный двигатель для танка схема

«Летающая» восьмидесятка: танк с душой самолета

Советское руководство полвека назад приняло революционное решение о создании газотурбинного танка. Так появился легендарный Т-80. За выдающиеся скоростные характеристики свои называли его «летающим», а чужие за высокие боевые качества дали имя «танк Ла-Манша».

Настоящая танковая битва разыгралась в феврале 1993 в Абу-Даби. На оружейной выставке IDEX впервые сошлись старые враги — отечественный Т-80У и американский M1A2 Abrams. Сражение было мирным. Танкисты не стреляли друг в друга. Им предстояло показать динамические и маневренные характеристики машин.

Российская восьмидесятка на большой скорости с лихими поворотами, словно раллийный болид, пронеслась по танкодрому. Гвоздем выступления стал прыжок Т-80У с трамплина. 46-тонная машина пролетела 14 метров и, мягко приземлившись, продолжила движение.

M1A2 попытался повторить этот трюк, но съехал на бок с трамплина и сошел с дистанции. Так был посрамлен хваленый Abrams, а Т-80У заслужил репутацию «летающего» танка.

Самодельный Газотурбинный двигатель на базе ТРК 11-Н-1

don migel

Старейший участник

kvadratov

Я люблю строить самолеты!

Чтоже — там ВСУ на пусковой стоит ? Я грешным делом думал ты про истории связанные с ЖРД вспомнил. Там на старинных 5Я205 и иже с ними много чудес было. Но они летали в пределах минуты — двух.

Если правда было ВСУ на — считай танке — ( на мобильной ПУ ) — тогда я думаю угадаю :

Газотурбинный двигатель АИ-8
Имеет механический отбор мощности на генератор 60 к W
Вес с генератором — 145 кг. Без генератора — думаю любая половина.

Вспомогательный двигатель АИ-8 разработан в ЗМКБ «Прогресс». Предназначен для запуска основных двигателей типа АИ-20, АИ-24 и аварийного питания бортсети. Серийное производство организовано в 1964 году на Запорожском моторном заводе.

АИ-8 устанавливался на самолётах Ан-8, Ан-12, Ан-24, Ан-26, Ан-30, Ан-32, Бе-12, Ил-18, вертолётах Ми-6, Ми-10, аэродромном пусковом агрегате АПА-8, электростанциях и пр.

don migel

Старейший участник

kvadratov

Я люблю строить самолеты!

Пошарил в поиске — интересное кино получается .

Предпосылкой для создания ОКБ-29 (позднее Омское моторостроительное конструкторское бюро) явилось начатое на Омском моторостроительном заводе им. П. И. Баранова в 1954 году производство моторов АШ-82Т и АШ-82В, разработанных на базе двигателя АШ-82ФН Пермским конструкторским бюро, возглавляемым главным конструктором Аркадием Дмитриевичем Швецовым.

На основе опыта, полученного при разработке ГТД-1, коллектив ОКБ приступил к разработке нового газотурбинного двигателя небольшой мощности, выполненного по одновальной схеме — ГТД-5 (ГТД-40), предназначенного для привода высокочастотного генератора С-20 мощностью 20 кВт на самоходной ракетной установке (изделие 2П24). Уникальность конструкции двигателя заключалась в применении осестремительной турбины и возможности применения двух видов топлива: керосин и дизельное топливо. Завод им. П.И. Баранова приступил к серийному производству двигателя ГТД-5. В последующем для привода генератора С-40 мощностью 40 кВт на изделии 2П25 «Куб» осуществлялась разработка двигателя ГТД-5М. Работы по доводке двигателя продолжались до 80-х годов. В 1980 году двигателю был установлен гарантийный ресурс 1250 ч., назначенный ресурс 3250 ч. Серийное производство двигателей продолжалось до 1991 года.

На ВТТВ-2009 ОАО «Омское моторостроительное КБ» представило на своем стенде — газотурбинный двигатель ГТД – 5М, серийное производство которого прекращено с начала 90-х годов.

Заместитель генерального директора по коммерции ОАО «ОМКБ» Валерий КОСТЯКОВ пояснил, что на базе этого двигателя КБ разработало стационарную установку, которая позволяет организовать технические посты на трассах в условиях Крайнего Севера.

ГТД -5М работает на любом виде жидкого топлива — бензине, керосине, солярке. На его редукторе устанавливается генератор, с помощью которого можно вести сварку. От двигателя также отходят горячие газы, которые можно использовать для подогрева большегрузных автомобилей на трассе. Это многофункциональная установка, — сообщил Валерий КОСТЯКОВ.

По его словам, предприятие пыталось продвинуть свою разработку в Якутии и Ямало-Ненецком АО, однако сильно не преуспело. Представитель ОАО «ОМКБ» признался, что данная установка «довольно-таки дорогое удовольствие».

1.1. Полное наименование общества
Открытое акционерное общество «Омское моторостроительное конструкторское бюро».
1.1. Сокращенное наименование общества
ОАО «ОМКБ»

1.2. Место нахождения общества и почтовый адрес
Россия, 644021, г. Омск, ул. Б. Хмельницкого, д. 283.

1.3. Контактная информация
Контактный телефон: (3812) 36-07-04
Факс: (3812) 36-04-46
Адрес корпоративного сайта: http://www.omkb.ru
Адрес электронной почты: oao_omkb@omkb.ru

В разные времена в ОАО «ОМКБ» были спроектированы и разработаны:
­ газотурбинные двигатели: ГТД-1 (1957г.), ГТД-3 (1959г.), ГТД-5 (1961г.), ГТД-3Ф (1962г.), ГТД-3Т (1963г.), ГТД-3ТЛ (1963г.), ГТД-3ТУ (1963г.), ГТД-3ТП (1963г.), ГТД-5М (1967г.), ГТД-3М (1970г.);
­ редукторы вертолетные: РВ-3 (1963 г.), РВ-3Ф (1963 г.), РВ-3М (1965 г.);
­ турбовинтовые двигатели: ТВД-10 (1967г.), ТВД-10М (1970г.), ТВД-10Б (1976г.), ТВД-20 (1978г.), ТВД-20-01 (1993г.), ТВД-20-03 (1993г.), ТВД-20-03Б (1993г.), ТВД-20-01Б (1993г.), ТВД-20-01БМ (1994г.);
­ унифицированный турбостартер ТКСЭ-17 (1976г.);
­ турбореактивный двигатель ТРДД-50 (1979г.);
­ вспомогательная силовая установка ВСУ-10 (1979г.);
­ турбовальный двигатель ТВ-О-100 (1983г.);
­ вспомогательная силовая установка ВГТД-43 (1994г.).

В числе перспективных инвестиционных проектов на вторую половину 2009 г. и 2010г. рассматривается ( в числе прочего ) — ­ разработка ДТРД на тягу 120. 180 кг на базе ТРДД .

Газотурбинный двигатель малой тяги

Газотурбинный двигатель малой тяги серии МкА (микроавиационный) отличается конструктивом, материалами, характеристиками, а также заранее продуманной интеграцией в ряд изделий. Это позволило повысить топливную эффективность двигателя на 82%, ресурс двигателя на 50 %, мощность на 30 %, надежность на 91%.

Описание:

Газотурбинный двигатель малой тяги серии МкА (микроавиационный) отличается конструктивом, материалами, характеристиками, а также заранее продуманной интеграцией в ряд изделий.

Основой двигателя является единый модуль, содержащий в себе:

гибридный компрессор, обеспечивающий необходимый коэффициент сжатия и напора газа на выходе из модуля,

блок торроидальной нессиметричной камеры сгорания с шариковой испарительной системой,

одноступенчатую турбину с пассивным охлаждением лопаток.

В конструкции газотурбинного двигателя малой тяги применены новые методы балансировки подвижных элементов двигателя, позволившие снизить нагрузку на подшипниковые узлы и увеличить ресурс их работы на 20%, и новые методы синтеза системы управления, которые позволили значительно снизить расход топлива .

Газотурбинный двигатель малой тяги производится с применением аддитивных технологий производства и нанонапылений, пероуглеродосодержащих и композиционных материалов.

В двигателе используются многоканальная система смазки внутренних узлов, инновационная система воздушных тепловых экранов и интеллектуальная система самодиагностики.

В двигателе применена система управления с распределенной логикой, способная подстраиваться под параметры внешней среды, текущие условия, режимы эксплуатации двигателя и оптимизировать его параметры для достижения максимальной мощности, сберегая при этом ресурс внутренних узлов и агрегатов.

Внедрение подобных технологий позволило повысить топливную эффективность на 82%, ресурс двигателя на 50 %, мощность на 30 %, надежность на 91%.

Преимущества:

– компактность,

высокие характеристики надежности, мощности и потребления топлива ,

– малый вес.

Технические характеристики газотурбинного двигателя малой тяги:

Характеристики:Значение:
Вес, г2060
Длина, мм324
Диаметр основной, мм115
Ширина с пилонами, мм128
Тяга максимальная, Ньютон (кВт)200 (12)
Тяга рабочая, Ньютон160
Расход топлива (на макс. тяге), мл/мин460
Используемое топливокеросин/дизельное топливо
Максимальные скорость вращения, об/мин120 000

Применение:

малая авиация,

локальная энергетика.

Примечание: описание технологии на примере газотурбинного двигателя малой тяги серии МкА (микроавиационный).

авиационный газотурбинный вспомогательный двигатель
продам новый первый танковый малый вертолетный вспомогательный газотурбинный двигатель аи 8
морские малоразмерные иноземцев корабельные российские судовые скубачевский авиационные газотурбинные двигатели для вмф россии 2016 год книга малой мощности россия скачать теория
вспомогательные газотурбинные паротурбинные установки двигатели газотурбинным наддувом
автомобильный маленький м90фр газотурбинный двигатель для авиамоделей для кораблей для фрегатов на автомобиле своими руками авто аи 20 аи 92 вертолета видео внутреннего сгорания гтд 1250 история купить недостатки принцип работы видео
как работает дизельный газотурбинный двигатель реферат т 80 танка т 80 установка цена ямз
использование газогидратов в газотурбинных двигателях
диагностика газотурбинного газотурбинный расчет испытания камера сгорания принцип работы применение обороты мощность конструкция модель компрессор газотурбинного двигателя в танке
мотоцикл с газотурбинным двигателем
работа вал запуск кпд редуктор ресурс ремонт ротор схема характеристики устройство цикл газотурбинного двигателя видео
завод изготовление агрегаты лопатки производство лопаток разработка центр технологической компетенции лопатки эксплуатация топливо масло для типы металлокерамические вставки для газотурбинных двигателей россии

Читать еще:  В каких двигателях есть распредвалы

Достоинства и недостатки газотурбинных двигателей

Газотурбинные двигатели во многом превосходят поршневые моторы. Благодаря способности развивать большие обороты устройство отличается высокой мощностью, но при этом имеет компактные размеры. В качестве топлива используют керосин или дизельное топливо. Масса газотурбинного двигателя в 10 раз меньше массы аналогичного по мощности двигателя внутреннего сгорания. Ввиду отсутствия трущихся деталей газовая турбина не требует наличия разветвленной системы охлаждения.

Инженеры Chrysler, создавшие единственный мелкосерийный автомобиль с газотурбинным двигателем, опытным путем выяснили, что лучшее топливо для ГТД — обычный керосин

Основным недостатком становится повышенный расход топлива, вызванный необходимостью искусственного ограничения температуры газов. Это ограничение связано с тем, что в случае с автомобилем двигатель устанавливается внутри кузова, а не под крылом, как, у самолета, например. Соответственно, температура двигателя не должна превышать 700 градусов. Металлы, устойчивые к таким температурам, имеют очень высокую стоимость. Эта проблема часто вызывает интерес у ученых, и в скором будущем должны появиться газотурбинные двигатели, обладающие хорошими показателями экономичности. Очевидно, это произойдет только в том случае, если будет решена проблема отвода большого количества тепла, что позволит ставить на автомобили «незадушенные» двигатели, в конструкции которых проблема экономичности решена. Среди недостатков также следует отметить высокие требования к качеству атмосферного воздуха и отсутствие возможности торможения двигателем.

Забытые эксперименты: тяжелые газотурбинные грузовики 17:50, 11 ноября 2019 Версия для печати

В послевоенные годы уникальным газотурбинным двигателям удалось ненадолго потеснить поршневые моторы на экспериментальных грузовиках. За четверть века на свет появилось лишь несколько удивительных машин нетрадиционной внешности, которые в конце 1970-х навсегда сошли со сцены.

В отличие от одновальных агрегатов для легковушек, на них монтировали мощные и экономичные двухвальные газотурбинные двигатели (ГТД). На их первичном валу были установлены компрессор и приводная турбина, на вторичном помещалась тяговая турбина с отбором мощности на шестеренчатый редуктор для привода колес. Ее вращали отработанные газы из камеры сгорания, которые одновременно подогревали воздух в компрессоре.

Газотурбинные грузовые машины: единство техники и лихого дизайна

Основная доля построенных тяжелых автомобилей с ГТД пришлась на 1960-е годы — разгар «газотурбинной эйфории». Тогда были созданы единичные образцы магистральных седельных тягачей с колесной формулой 6×4 и высокими воздухозаборными и выхлопными трубами, привлекавшие зрителей не своими уникальными возможностями, а необычными внешними формами и изобретательными приманками в интерьере.

Вскоре после войны один из ведущих американских изготовителей тяжелых грузовиков, Kenworth, и авиастроительная компания Boeing создали совместное предприятие по разработке перспективных газотурбинных автомобилей для эксплуатации на скоростных хайвэях США.

Первый в мире тяжелый газотурбинный автомобиль Kenworth (справа) и серийный дизельный вариант Kenworth-524. 1950 год

О воплощении в жизнь этой поначалу секретной задачи стало известно летом 1950 года, когда на сравнительные испытания вышли два капотных автомобиля со спальными отсеками, буксировавшие двухосные полуприцепы-фургоны. Первым был серийный тягач Kenworth-524 с 180-сильным дизелем Cummins. Вторая машина отличалась установкой газовой турбины Boeing 502-8A мощностью 175 л.с. и двумя широкими трубами для подвода свежего воздуха и выброса отработанных газов.

Нос к носу сопоставление размеров силовых агрегатов в моторных отсеках с газовой турбиной (справа) и обычным дизелем

Первый в мире компактный ГТД для тяжелой автотехники в полной комплектации весил 104 килограмма (в девять раз меньше, чем обычный дизель) и умещался на дне моторного отсека со снятыми радиатором и капотом с обеими боковинами. Для понижения рабочего режима турбины служил планетарный редуктор, передававший крутящий момент на механическую коробку передач.

Испытания, проводившиеся в течение двух лет, доказали неприспособленность таких автомобилей к практическому применению. Главные претензии сводились к сильному шуму горячих выхлопных газов и непомерно высокому расходу топлива — до 235 литров на 100 км.

Снятое оперение тягача с миниатюрной газовой турбиной создавало эффект полного отсутствия двигателя под капотом

Так первая и последняя 12-летняя попытка создания и применения тяжелых газотурбинных машин провалилась. На короткое время их заменили эффектные макетные образцы с ГТД, часто вообще не способные передвигаться самостоятельно.

Макетный образец футуристического двухмоторного четырехосного 1000-сильного автомобиля Chevrolet Bison. 1964 год

Считается, что главной целью создания экзотического четырехосного 1000-сильного грузового концепта Chevrolet Bison являлось продвижение в США работ молодого немецкого дизайнера Луиджи Колани. Его творение состояло из двух поворотных тележек с четырьмя ведущими колесами, в задней части которых стояли два ГТД: основной в 300 сил и вспомогательный 700-сильный для разгона и форсирования подъемов. Между ними планировали подвешивать контейнеры или кузов-салон с креслами для отдыха. На деле эффектный «Бизон» оказался неподвижным макетом.

Передняя двухосная ведущая и поворотная тележка грузовика Chevrolet Bison с кабиной водителя и газовой турбиной

Ford Gas Turbine Truck: самый длинный, большой и красный

Самым крупным газотурбинным тягачом был бескапотный концепт-трак Ford Gas Turbine Truck красного цвета, более известный под прозвищем Big Red («Большой и красный»). В составе 30-метрового автопоезда полной массой 77 тонн он буксировал однотипные двухосный полуприцеп-фургон и четырехосный прицеп фирмы Fruehauf.

Эффектный газотурбинный тягач Ford Gas Turbine Truck по прозвищу Big Red с одним полуприцепом и одним прицепом. 1964 год

В стальном моторном отсеке под кабиной помещался 600-сильный ГТД Ford-705, работавший с автоматической трансмиссией Allison. На передних колесах тягача впервые появились телескопические амортизаторы, вместимость топливного бака составляла 1000 литров.

Особого «визга» удостоилась перенасыщенная оригинальными «игрушками» кабина с ровным полом, расположенная на двухметровой высоте. Для входа в нее служили лестница с электроприводом и пневматический механизм входной двери. Скромное рабочее место водителя напоминало пульт управления самолетом. В его распоряжении были кондиционер, холодильник, микроволновая печь, телевизор, умывальник и минитуалет. На демонстрационных пробегах автопоезд развивал скорость 115 км/ч и показал средний расход топлива 100 литров на 100 км. До серийного выпуска он не дошел.

Chevrolet Turbo Titan III: «Титан», не лишенный элегантности

Через год свое место под «газотурбинным солнцем» заняла компания Chevrolet, представившая прозаичный и практичный тягач Turbo Titan III со всеми односкатными колесами, рассчитанный на работу в составе автопоездов полной массой до 35 тонн.

Магистральный 15-метровый автопоезд с тягачом Chevrolet Turbo Titan III и двухосным полуприцепом. 1965 год

На нем применялся серийный ГТД GT-309 мощностью 280 л.с. и автоматическая трансмиссия Allison. И здесь главной новинкой была оригинальная стеклопластиковая кабина с панорамным лобовым окном и характерными боковыми воздухозаборниками (жабрами) с выдвигавшимися фарами. Впервые в кабине появились стереофоническое радио и прообраз мобильного телефона, а обычное рулевое колесо заменила панель с двумя поворотными рукоятками (штурвалами). В течение трех лет автопоезд участвовал в демонстрационных заездах, достигая скорости 113 км/ч. Сложный и дорогой автомобиль в производство тоже не поступил. В 1967 году этот весьма привлекательный автопоезд с изотермическим полуприцепом был отправлен на слом.

Читать еще:  Stels delta 200 какой двигатель

Нетрадиционный блок управления автомобилем с двумя дублировавшими друг друга поворотными штурвалами

Следующей новинкой из-за океана стал серийный бескапотный тягач Ford WT-1000D. В задней части его укороченной кабины помещался компактный ГТД Ford A-707 мощностью 375 сил, работавший с пятиступенчатой коробкой передач. Автопоезд служил для проведения рекламных кампаний по расширению работ по газотурбинной технике.

Тягач Ford WT-1000D с ГТД развивавший скорость 95 км/ч. 1966 год

Последней в этом ряду стала британская корпорация Leyland, собравшая партию многоцелевых шасси и тягачей Leyland Gas Turbine с собственным ГТД 2S/350, развивавшим мощность 350-400 л.с. и весившим 500 килограммов.

Грузовое шасси Leyland Gas Turbine с британской газовой турбиной 2S350 мощностью 400 л.с. 1968 год

За кабиной автомобиля Leyland виден ГТД с хромированными воздухозаборной и выхлопной трубами

Советские секретные газотурбинные КрАЗы: несбывшиеся надежды

В 1970-е годы на Кременчугском автозаводе построили два опытных варианта Э260Е и 2Э260Е с ГТД мощностью 350 и 360 сил соответственно. Огромный расход топлива и ненадежность основных узлов привели к закрытию этого проекта.

Опытный газотурбинный грузовик КрАЗ-Э260Е с удлиненным прямоугольным капотом. 1974 год

Перспективы развития и улучшения двигателя

Сейчас у ученых основной проблемой является разработка способа понижения расхода топлива. Повышение эргономичности может достигаться в случае:

  1. Увеличения КПД центробежных процессоров;
  2. Повышения температуры и давления газов и использования тепла исходящих газов.

Идея использования теплообменника не является новой. Но ситуация в сторону уменьшения размеров, массы двигателя, обеспечения полной передачи тепла от газа к воздуху при минимальных потерях давления.

Особенности конструкции газотурбинных двигателей

Книга может оказаться полезной при изучении особенностей конструкции и эксплуатации авиационных газотурбинных двигателей.

Оглавление

  • Конструкция газотурбинных двигателей

Приведённый ознакомительный фрагмент книги Особенности конструкции газотурбинных двигателей предоставлен нашим книжным партнёром — компанией ЛитРес.

© В. М. Корнеев, 2019

Создано в интеллектуальной издательской системе Ridero

Конструкция газотурбинных двигателей

Общие сведения о ГТД

Краткая история создания отечественных авиационных ГТД

Первые проекты воздушно-реактивных двигателей (ВРД) были разработаны в России еще во второй половине XIX века. Инженером И. И. Третеским в 1849 г. предложено использовать для передвижения аэростата силу реакции, возникающую при истечении сжатого воздуха. Несколько позже, в 1866 г., Н. М. Соковнин разработал проект компрессорного ВРД, предназначенного для дирижабля. В 1867 г. Н. Телешов изобрел двигатель «Теплородный духомет», содержащий все основные части современного ВРД.

Первый работающий турбинный двигатель создан в России в конце XIX века. В период с 1886 по 1892 гг. инженер П. Д. Кузьминский разработал, построил и провел испытания в Петербурге газопаротурбинного двигателя, в котором процесс подвода тепла к рабочему телу протекал при постоянном давлении. Двигатель П. Д. Кузьминского имел многоступенчатую радиальную турбину с концентрически расположенными сопловыми и рабочими лопатками. В 1890 г. П. Д. Кузьминский впервые предложил использовать газовую турбину в авиации.

Русским инженером В. В. Караводиным в 1906 г. запатентован «Аппарат для получения пульсирующей струи газа значительной скорости вследствие периодических взрывов горючей смеси». Во время второй мировой войны в Германии были построены пульсирующие ВРД, устанавливаемые на самолетах-снарядах (ФАУ-1) и работающие по предложенной В. В. Караводиным схеме.

В 1909 г. Н. В. Герасимов получил патент на двигатель, имеющий все основные элементы современного турбореактивного двигателя (ТРД). Схему турбовинтового двигателя (ТВД), в котором воздушный винт имел привод от газовой турбины, впервые разработал М. Н. Никольский в 1913 г. Модель этого двигателя была построена и испытана. Его предполагали использовать для самолета «Илья Муромец».

В 1949 г. создан ТРД с центробежным компрессором ВК-1 конструкции В. Я. Климова, имеющий наибольшую в мире тягу (27 кН) при минимальном удельном расходе топлива (0,104 кг/Н-ч) и удельном весе, равном 0,32. Этот двигатель был установлен на фронтовых истребителях и бомбардировщиках взамен РД-45, а в начале 50-х годов использован на скоростном почтово-грузовом гражданском самолете Ил-20. Последующий вариант этого двигателя с форсажной камерой ВК-1Ф, созданный в 1951 г., развивал тягу на форсажном режиме 33 кН и был установлен на фронтовом истребителе МИГ-17.

Первый отечественный ТРД с осевым компрессором ТР-1 конструкции А. М. Люлька прошел государственные испытания в 1947 г. Двигатель РД-9Б с форсажной камерой, созданный в 1952 г. под руководством С. К. Туманского, убедительно доказал преимущества ТРД с осевым компрессором перед ТРД с центробежным компрессором. Он обеспечил возможность создания первого в СССР серийного сверхзвукового истребителя МИГ-19 (1954 г.) с максимальной скоростью полета 1450 км/ч. Двухвальный ТРДФ с осевым компрессором Р11Ф-300 конструкции С. К. Туманского, на котором достигнута весьма высокая степень форсирования тяги, был применен на сверхзвуковых истребителях МИГ-21 (1958 г.), принятых на вооружение не только в СССР, но и в ряде других стран.

Параллельно с разработкой двигателей для сверхзвуковых истребителей советские конструкторы принимали энергичные меры по созданию новых ГТД с большой тягой и низким удельным расходом топлива для дальних бомбардировщиков и самолетов гражданской авиации. Конструкторским коллективом под руководством А. А. Микулина еще в 1946—1947 гг. создано несколько опытных двигателей большой тяги (ТКРД с тягой 37 кН, затем ТРД с тягой 47 кН), а в 1951 г. построен серийный турбореактивный двигатель АМ-3, имеющий наибольшую в мире тягу 86 кН. Двигатель АМ-3 в начале 50-х годов был установлен на дальнем бомбардировщике Ту-16, а его модифицированный вариант РД-ЗМ (максимальная стендовая тяга 95 кН) — на первом турбореактивном пассажирском самолете Ту-104, вышедшим на воздушные трассы в 1956 г. Наряду с турбореактивными двигателями в СССР созданы первоклассные ТВД для пассажирских и транспортных самолетов. Так, турбовинтовой двигатель НК-12МВ конструкции Н. Д. Кузнецова, работа по созданию которого были начаты еще в 1954 г., вплоть до настоящего времени не имеет себе равных в мире среди ТВД по мощности и экономичности (взлетная мощность более 11000 кВт, удельный расход топлива 0,28 кг/кВт-ч). Двигателями НК-12МВ вначале оборудовали пассажирский самолет Ту-114, а позднее — транспортный самолет Ан-22, «Антей», на котором в октябре 1967 г. был поднят самый большой для того времени груз (более 100 т на высоту 7848 м).

ТВД АИ-20 конструкции А. Г. Ивченко, заложенный в опытное производство с 1956 г., получил широкое применение на высокоэкономичных пассажирских самолетах Ил-18 и Ан-10, которые внесли основной вклад в обеспечение рентабельности воздушных перевозок. Двигатель АИ-20 имел наибольший для своего времени межремонтный ресурс (4000 ч, а отдельные экземпляры до 6000… 8000 ч) и высокую безотказность, достигающую уровня лучших мировых образцов ГТД данного класса. На базе двигателя АИ-20 конструкторским коллективом, руководимым А. Г. Ивченко, создан ТВД АИ-24, имеющий примерно в 1,7 раза меньшую мощность и установленный на самолет Ан-24, который до настоящего времени выполняет основной объем пассажирских перевозок на местных воздушных линиях.

Первым в нашей стране серийным ТРДД был двигатель Д-20П, созданный в 1960 г. под руководством П. А. Соловьева для пассажирского самолета Ту-124. В дальнейшем конструкторским коллективом, возглавляемым П. А. Соловьевым, построены ТРДД Д-30, Д-З0КП и Д-З0КУ, установленные на широко известные самолеты Ту-134, Ил-76 и Ил-62М.

Коллективом генерального конструктора Н. Д. Кузнецова в 60-х годах разработаны и построены оригинальные ТРДД семейства НК-8, примененные на скоростных пассажирских самолетах Ил-62 и Ту-154, а позже создан ТРДДФ НК-144 для сверхзвукового пассажирского самолета Ту-144 и выпущен высоконадежный двухконтурный двигатель НК-86, работающий на первом в нашей стране аэробусе Ил-86.

Читать еще:  Блок облегчения запуска двигателя

Ряд совершенных ТРДД разработан в конструкторском бюро, возглавляемом В. А. Лотаревым. Одним из первых двигателей этого коллектива был ТРДД АИ-25, установленный на самолет местных авиалиний Як-40. Для пассажирского самолета Як-42 и транспортного Ан-72 под руководством В. А. Лотарева создан высокоэкономичный и легкий ТРДД с большой степенью двух-контурности Д-36, который по конструктивному совершенству и удельным параметрам находится на уровне лучших мировых образцов современных ГТД данного класса.

Двигатель Д-36 был всесторонне исследован как модель построенного позже крупного ТРДД Д-18Т с тягой 230 кН. Самый большой для своего времени самолет ан-124, «Руслан», оснащенный четырьмя двигателями Д-18Т, в августе 1985г. установил мировой рекорд грузоподъемности, подняв груз массой более 171 т на высоту 10750 м. Груз, поднятый «Русланом», более чем на 60 т превышает предыдущий рекорд мира, установленный в декабре 1984 г. военно-транспортным самолетом США С-5А «Гэлакси». Всего на самолете Ан-124 зарегистрировано (за 1985 г.) 21 мировое достижение в полете.

Этапы развития, области применения и параметры ГТД

До конца второй мировой войны монопольное положение как в военной, так и в гражданской авиации занимали силовые установки с поршневыми двигателями, используемыми в качестве генераторов мощности, и воздушными винтами, выполняющими роль движителей. В период интенсивного развития поршневых двигателей (примерно 1910—1945 гг.)

В первом поколении ГТД преобладающим типом был турбореактивный двигатель, который совместил в себе функции генератора мощности и движителя, отрицая воздушный винт как движитель, имеющий ограниченные скоростные возможности Скорости истечения газа из сопла ТРД в несколько раз превышают скорости воздушных масс, отбрасываемых винтом.

В процессе эволюционного развития, протекающего, в основном, по пути увеличения температуры газа перед турбиной и степени повышения давления воздуха в компрессоре, появились труднопреодолимые недостатки турбореактивных двигателей сильно ограничившие их применение на самолетах гражданской авиации. Они обусловлены, в частности, тем, что процессы сжатия и расширения рабочего тела в лопаточных машинах происходят с большими потерями, чем в цилиндрах поршневого двигателя, из-за перетеканий воздуха и газа в зазорах между ротором и статором, повышенных потерь на трение в высокоскоростном потоке и т. п. Трудности охлаждения элементов горячей части ГТД (в основном деталей ротора турбины) намного снижают допустимую температуру газа по сравнению с достигнутой в поршневых двигателях. Все это делает рабочий процесс ТРД не столь совершенным, а КПД, соответственно, меньшим. По принципу создания тяги ТВД отрицает ТРД, в результате чего происходит возврат к исходной схеме силовой установки «двигатель — воздушный винт», но на значительно более высоком уровне развития, так как турбовинтовой двигатель не имеет таких жестких весовых ограничений по мощности, как поршневой [1].

Турбовинтовые двигатели обеспечили возможность существенного (по сравнению с поршневыми) увеличения скорости и грузоподъемности самолетов за счет избытка располагаемой мощности при малой массе конструкции и позволили достичь большой дальности полета благодаря высокой топливной экономичности, характерной для силовых установок с воздушным винтом.

Разработанные ТВД послужили основой для создания вертолетных ГТД, выполняемых, как правило, без встроенного редуктора и с расположенной на отдельном валу свободной (силовой) турбиной, используемой для привода несущего винта через выносной редуктор. Такие ГТД получили название турбовальных двигателей со свободной турбиной (ТВлД). Замена ими поршневых двигателей позволила существенно повысить мощность вертолетных силовых установок при незначительном увеличении их массы и увеличить за счет этого грузоподъемность вертолетов.

По мере накопления опыта проектирования ГТД появилась возможность создания газогенераторов, надежно работающих при Тг=1500… 1650 К, и степени сжатия воздуха 20…30, и высоконагруженных одноступенчатых вентиляторов со сверхзвуковым обтеканием лопаток со степенью сжатия равной 1,4…1,6, что позволило повысить степень двухконтурности ДТРД до 6…8 и снизить за счет этого удельный расход топлива до 0,032…0,038 кг/ч на взлетном режиме при одновременном уменьшении удельного веса.

Столь существенное улучшение параметров достигнуто благодаря широкому применению двух — и трехвальных схем, повышению КПД узлов конструктивными мероприятиями, использованию конвективно-пленочного охлаждения лопаток турбин, дальнейшему совершенствованию материалов и технологических процессов и т. п.

Дальнейшее развитие ГТД для самолетов гражданской авиации протекает, в основном, по пути улучшения их топливной экономичности. Резервы для этого есть, в частности потому, что существующие ДТРД с большой степенью двухконтурности еще не достигли уровня ТВД по удельному расходу топлива. Радикальным средством уменьшения удельного расхода топлива ДТРД является дальнейшее увеличение степени двухконтурности, которое, однако, в рамках их схемы может привести к значительному возрастанию удельного веса, что недопустимо. Поэтому в настоящее время созданы и проходят опытную доводку ГТД качественно нового типа — винтовентиляторные двигатели (ТВВД), в которых движителем является винтовентилятор (ВВ), представляющий собой малогабаритный высоконагруженный многолопастной воздушный винт изменяемого шага. Диаметр ВВ примерно на 40% меньше диаметра обычного винта, поэтому он может допустить большую скорость полета (до 850 км/ч) при сохранении КПД на приемлемом уровне.

Удельный расход топлива винтовентиляторных двигателей должен быть ниже, чем у ТВД классической схемы, так как их газогенераторы имеют (в соответствии с достигнутым уровнем развития) значительно более высокие параметры рабочего цикла и эффективный КПД. За счет прироста скорости полета ТВВД могут обеспечить для самолетов уменьшение расхода топлива на единицу транспортной работы примерно на одну треть по сравнению с лучшими ТВД.

Возникшее противоречие между необходимостью повышения температуры газа и ограниченными прочностными возможностями турбины было разрешено созданием на основе ТРД нового типа газотурбинного двигателя (ТРДФ) с подогревом газа путем сжигания дополнительного количества топлива в специальной камере сгорания (форсажной камере), расположенной между турбиной и реактивным соплом.

При больших дозвуковых и околозвуковых скоростях целесообразно применять ДТРД. Высокотемпературные ТРД могут обеспечить малые сверхзвуковые скорости (до Мн=2,0) при высотах полета около 20 км. Полеты при скоростях, соответствующих Мн= 2,0…3,5, на высотах до 30 км освоены с помощью ТРДФ и ДТРДФ. Дальнейший переход к большим сверхзвуковым и гиперзвуковым скоростям (Мн=6…8) возможен с применением турбопрямоточных и других комбинированных двигателей.

Перспективы развития ГТД

Определяющими факторами перспективного развития транспортной авиации, по мнению специалистов, будут социально-психологический и экономический факторы.

Социально-психологический фактор объединяет такие требования, как гарантия безопасности полетов, сокращение времени передвижения, комфорт, минимальное воздействие на окружающую среду и др.

Экономический фактор содержит в себе стремление к снижению себестоимости перевозок, росту эффективности использования воздушных судов, уменьшению эксплуатационных затрат и т п. Роль двигателей здесь весьма велика, так как, например, доля расходов на эксплуатацию современных широкофюзеляжных самолетов, связанная с двигателями, составляет 40—50%. Особенно велико значение двигателей для проблемы повышения эффективности использования топлива, на которую наибольшее влияние оказывает удельный расход топлива на крейсерском режиме полета. Уменьшение крейсерского удельного расхода топлива приводит не только к непосредственному уменьшению потребного на полет запаса топлива, но и к его дополнительному снижению за счет применения для облегченного самолета двигателей меньшей тяги.

Конец ознакомительного фрагмента.

Оглавление

  • Конструкция газотурбинных двигателей

Приведённый ознакомительный фрагмент книги Особенности конструкции газотурбинных двигателей предоставлен нашим книжным партнёром — компанией ЛитРес.

Смотрите также

Когда всё только-только начинается. Небесные истории – 1

Анализ конструкции и лётной эксплуатации функциональных систем самолета Ту-204

Владимир Митрофанович Корнеев

Азы сметного дела. Составление локальных смет

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector