Aklaypart.ru

Авто Журнал
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Электростатический двигатель литовченко как собрать

Презентация к научно-исследовательской работе «Электростатический двигатель и его математическая модель»

Новые аудиокурсы повышения квалификации для педагогов

Слушайте учебный материал в удобное для Вас время в любом месте

откроется в новом окне

Выдаем Удостоверение установленного образца:

Описание презентации по отдельным слайдам:

Электростатический двигатель и его математическая модель Дворников Н.В. 11 кл. МОУ «Луховский лицей». Руководитель: Смирнова С.Г. учитель физики МОУ «Луховский лицей»

Целью настоящей работы является построение математической модели электростатического двигателя и поиск материала ротора.

Актуальность работы: электростатический двигатель является практически бесшумными и может найти применение в космосе для изготовления вентиляторов.

Гипотеза: изготовление электростатического двигателя с использованием пористых материалов позволяет повысить емкость ротора, что позволит увеличить вращательный момент.

Электростатический двигатель был изобретен Литовченко С.С. в 1982г [1]. В этом электродвигателе отсутствовали щетки, и поэтому ресурс работы таких двигателей очень большой. Они являются практически бесшумными и находят применение в космосе для изготовления вентиляторов. Недостатком таких двигателей является малый вращательный момент. Нами был изготовлен такой двигатель, в котором удалось резко увеличить вращательный момент за счет использования пористого материала для изготовления ротора. Для того чтобы провести дальнейшее увеличение вращательного момента двигателя, необходимо разобрать физику процесса работы двигателя и построить математическую модель. С помощью физической модели двигателя можно найти пути дальнейшего повышения мощность таких моторов.

Устройство и принцип действия электростатического двигателя На рис.1 изображена схема двигателя: 1, 2 — электроды, 3 — ротор. 4 – ось ротора. Высокое напряжение подается на электроды 1, 2. Ротор располагается между электродами. Заряды стекают с острых концов электродов на ротор. Так как ротор состоит из диэлектрика, то области ротора около электродов заряжаются одноимённо с электродами. Следовательно, возникают силы отталкивания (F) между электродами и ротором. Рис 1

Вращающий момент пары сил будет равен: M=2FR R- радиус ротора. Определим силу F. Эта сила является силой кулоновского отталкивания между зарядами электродов и ротора. Величина зарядов, которые стекают с электродов на ротор, зависит от емкости ротора. q=CU (2) Используя закон Кулона, определим силу отталкивания между электродами и ротором. Полагая заряды электродов и ротора равны q1=q2=q, расстояние от электродов до ротора обозначим L, получим: Математическая модель электростатического двигателя и поиск материала ротора (1) (3)

Определим вращательный момент ротора. (4) Из соотношения можно сделать следующие выводы: для увеличения вращательного момента необходимо: увеличить радиус ротора, увеличить напряжение на электродах, увеличить емкость ротора, уменьшить расстояние между ротором и электродами.

Напряжение поднимать выше напряжения пробоя ротора диэлектрика не имеет смысла. Потому что начинается нагрев ротора из-за больших токов. Увеличивать радиус ротора также в ряде случаев нельзя из-за ограничений по объёму. Уменьшать расстояние между ротором и электродами также не имеет смысла, если начинается пробой. Следовательно, лучшим способов увеличения вращательного момента является увеличение емкости.

Вращающий момент в этом случае квадратично зависит от величины емкости. Конструкция двигателя представляет собой плоский конденсатор. В качестве электродов мы использовали металлические пластины с острыми краями. Ротор располагался между пластинами. При подаче высокого напряжения заряды с электродов стекали на ротор и возникали силы отталкивания между электродами и ротором направленные по касательной к поверхности ротора. Для оценки емкости ротора в первом приближении воспользуемся формулой:

Так как заряды на твердом теле всегда располагаются на поверхности [2] и их величина пропорциональна напряжению, то выражение (5) запишем в виде: где — поверхностная плотность зарядов при потенциале 1В, (5) (6)

Для нашего случая это соотношение является грубым приближением, но позволит нам найти пути повышения емкости. Площадь ротора можно резко увеличить, используя пористый материал. Рассчитаем площадь пористого материала. Для простоты расчетов поры будем считать шарообразными, и расчет проведем для куба.

Пусть а — размеры ребра куба. r-радиус пор, тогда n-число шаровидных пор, умещающихся на ребре. Тогда количество пор в кубе равно n3. Поверхность пор будет равна: Из (6) следует, что емкость пористого материала обратно пропорциональна размеру пор. (6) (7)

Чем меньше размер поры, тем больше поверхность пор в данном объёме, а следовательно согласно (7) емкость ротора. Точные выражения для удельных поверхностей пористых материалов приведены [3]. Для создания ротора необходимо использовать пористый материал. Такой материал значительно увеличит емкость ротора и, следовательно, вращательный момент. Подставляя выражение (7) в (4) получим выражение для вращающего момента в первом приближении: где А=const, для данного двигателя. Если размеры пор в 10 раз меньше размера ротора, то момент возрастет в 104 раз. (8)

Нами была проведена экспериментальная проверка разработанной конструкции. Были изготовлены два двигателя по схеме рис.1. В качестве источника питания служил высоковольтный школьный выпрямитель. В первом случае ротор был сделан из пластмассы как в патенте [1]. Во втором случае ротором служил пенопластовый цилиндр. Второй ротор имел скорость вращения примерно в 10 раз выше.

В результате математического моделирования и экспериментальной проверки можно сделать следующий вывод: для резкого увеличения вращательного момента электростатического двигателя ротор двигателя необходимо изготовлять из пористого материала. В настоящее время такие материалы созданы и могут быть использованы для создания ротора. Например, ротор из графенового материала согласно [4] позволит увеличить емкость в 104 раз. В настоящее время электростатические двигатели не находят промышленного применения ввиду малой мощности. Мы полагаем, что предлагаемое решение позволит создать промышленный вариант таких двигателей.

1.Литовченко С.С., Тимченко Н.М. Электростатический двигатель. Патент №SU 1224936 2. Мякишев Г.Я., Буховцев Б.Б., Чаругин В.М. Физика. Из-во: М.: Просвещение,: 2014, 400 с 3. Витязь П.А., Капцевич В.М., Кусин Р.А., Пилиневич Л.П., Рак А.Л., Сморыго О.Л., Шелег В.К. Пористые порошковые материалы: история создания, современное состояние и перспективные разработки. http://www.science.by/upload/iblock/f02/f025be154eb66c4b931ccd675e3c3e92.pdf3 4.Графеновый суперконденесатор. http://scorcher.ru/journal/art/art2359.php Литература

Спасибо за внимание

Курс повышения квалификации

Дистанционное обучение как современный формат преподавания

Курс профессиональной переподготовки

Физика: теория и методика преподавания в образовательной организации

Курс повышения квалификации

ЕГЭ по физике: методика решения задач

  • Все материалы
  • Статьи
  • Научные работы
  • Видеоуроки
  • Презентации
  • Конспекты
  • Тесты
  • Рабочие программы
  • Другие методич. материалы

  • Смирнова Светлана ГеоргиевнаНаписать 760 27.12.2016

Номер материала: ДБ-053561

  • Физика
  • 11 класс
  • Презентации
    27.12.2016 266
    27.12.2016 244
    27.12.2016 5240
    27.12.2016 508
    27.12.2016 351
    27.12.2016 252

Не нашли то что искали?

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

В России с начала года выросло количество погибших в ДТП детей

Время чтения: 1 минута

Число бюджетных мест на IT-направлении к 2024 году увеличат вдвое

Время чтения: 2 минуты

В пяти регионах России протестируют новую систему оплаты труда педагогов

Время чтения: 2 минуты

Школы организуют экскурсии и спортивные игры в день выборов

Время чтения: 1 минута

ЕГЭ в 2022 году может пройти в допандемийном формате

Время чтения: 1 минута

Избыток свободного времени вредит здоровью

Время чтения: 2 минуты

Подарочные сертификаты

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.

МПК / Метки

Способ регулирования углового положения ротора двигателя двойного питания

Номер патента: 1310991

. вызываемымнагрузкой. В общем случае имеем 10 с 1 бК с — (со — и) ) . (2)д р Р2Из (2) получаемД= К с. Й 1 — (с, -4 г)йс.Р15 р фК Лс 1 ррф -2 Н( — -)-9=РКР ь РР + с 1 ро я (и-иг )- ,где ср, — начальный угол поворота ротора;Л ф — приращение угла поворотаротора;начальная фаза питающего напряжения;Т, Т 2 — периоды питающих напряжений;и,и г — числа соответствующихпериодов за времяТак как ср,= с, + сР/КР, то из(2) получаем2 адр = — (и -и ). (ЗЗР КгРОтсюда следует, что приращениеугла поворота пропорционально разности чисел периодов, подсчитанных завремя регулирования, и обратно пропорционально коэффициенту электрической редукции. Поэтому разностьчисел периодов зависит от заданногоприращения угла следующим образом:Крди = и — и = -.

Способ регулирования углового положения ротора двигателя двойного питания

Номер патента: 1372582

. регулированием (путем изменения частоты питания), что наиболее точно соответствует требованиям следящих систем, в которых требуется управлять непосредственно углом поворота, а не частотой вращения (управление частотой вращения также бывает необходимо в переходных режимах, но имеет подчиненный характер).Предлагаемый способ обеспечиваетпрямое управление именно углом поворота, минуя операции задания частоты вращения изменения частоты, измерения углового положения и выдачи команды на стопорение двигателя (перевод его в режим синхронного стояния). Закон изменения фазового сдвига во времени может быть самым разнообразным в зависимости от заданного угла поворота, требований к динамическим и энергетическим характеристикам в переходных режимах.

Читать еще:  Фиат кубо какие двигатели

Способ регулирования углового положения ротора двигателя двойного питания

Номер патента: 1436265

. подключен к первому входу пер- вого блока 9 сравнения, к второму входу которого подключен выход блока О задания угла поворота. Выход первого блока 9 сравнения соединен с первым входом регулятора 11 фазового сдвига, Выход датчика 8 угла поворота подклю» чен также к информационному входу блока 12 памяти и первому входу второго блока 13 сравнения, к второму входу которого подключен выход блока 12 памяти. К входу записи блока 12 памяти подключен третий выход блока 7 задания фазового сдвига, Выход второгоблока 3 сравнения соединен с первымвходом блока 14,сравнения, с вторым входом которого соединен выход блока15 вычисления заданного шага. Выход третьего блока 14 сравнения подключен к второму входу регулятора 1 фазового сдвига, выход.

Способ регулирования углового положения ротора двигателя двойного питания

Номер патента: 1524153

. вычисления ошибки по углу поворота — выходдатчика 11 угла поворота, механически связанного с ротором двигателя 1двойного питания, Выход блока 9 вычисления ошибки по углу поворотаподключен к входу блока 12 взятия модуля, а также к первым входам логического блока 13 и блока 4 задания фазового сдвига, К вторым входам логического блока 13 и блока 14 заданияФазового сдвига подключен соответственно первый и второй выходы блока5 сравнения, К третьему входу логического блока 13 подключен выход определителя 16 знака угла нагрузки, входкоторого соединен с выходом датчика17 угла нагрузки, содержащего фазовыйдетектор 18, выход которого являетсявыходом датчика 17 угла нагрузки, исумматор 19, выход которого соединенс первым входом Фазового.

Способ регулирования углового положения ротора двигателя двойного питания

Номер патента: 1541752

. или амплитудно-модулированных по синусоидальному закону, то существует минимальное значение приращения фазы (фазовая дцскрета) для каждого иэ питающих напряженцйт т Ю 1 мини й т- фазовые дискреты соответственно первого ц второго питающих напряжений;9 15417и и и — число тактовых импульсовгв периоде первой гармоники соответственно первогои второго питающих напряжений,5Изменение фазы каждого питающего,напряжения осуществляется дис.кретно,а величины дискрет определяются в соответствии с (4). ОС учетом выражений (3) и (4) результирующая фаэовая дискрета доп».ределяется следующим образом: 5а элементарный шаг двигателя двойногопитания мцн г Чймин(6) 2 Го( =К (и + ап)РЭлементарный шаг переменного ротора двигателя двойного.

Пластиковые двигатели Ефименко, питающиеся от воздуха

А вы поверите в электродвигатель, который сделан почти полностью из пластика? Что может работать на мощности, передаваемой по воздуху? И «тащить» бесплатное электричество прямо из электрического поля Земли? Рассмотрим одну занимательную статью из журнала «Popular Science» аж за апрель 1971 года.

Эти замечательные машины сегодня практически неизвестны. И все же первый в мире электродвигатель был электростатическим. Он был изобретен в 1748 году Бенджамином Франклином. В 1870 году немецкий физик Й.К. Поггендорф построил такой простой двигатель. Весь мотор представлял собой пластиковый диск и два электрода. Но оба они так и не вызвали должного внимания.

Двигатель Поггендорфа.

И тут на сцене появляется Олег Ефименко. Родившийся в России физик посещал занятия в Геттингенском университета во второй половине 40-х, где профессор Р.У.Пол, демонстрировал две металлические пластины квадратной формы, закрепленные на конце шеста. Он высунул устройство на улицу из окна и перевернул его на 180 градусов. Гальванометр, прикрепленный к пластинам, резко дернулся.

Двигатель Олега Ефименко.

Я никогда не мог забыть эту демонстрацию», — говорил после Ефименко. «И мне было интересно, почему, если в воздухе есть электричество, его нельзя использовать, чтобы зажечь лампочку или что-то в этом роде».

Двигатель Олега Ефименко.

А затем Ефименко и его аспирант Генри Фишбаха-Назарио разрабатывал и усовершенствовал свои двигатели. Он экспериментировал с электретными моторами. Электрет — это изолятор с постоянным электростатическим зарядом. Он создает постоянное электрическое поле в окружающем пространстве, так же как магнит создает постоянное магнитное поле. И как магнит, он может быть использован для создания двигателя.

Испытания устройств Олега Ефименко.

Особенно показательным был так называемый «климатический эксперимент». В ночь на 29 сентября 1970 года Ефименко и Уокер вышли на пустую парковку и подняли на 8-ми метровую высоту шест-антенну, окрашенную в оранжевый цвет. На конце шеста было немного радиоактивного материала в капсуле, связанной с проводом. Экспериментаторы подключили электретный мотор к антенне, и, как описывает его Ефименко, «энергия электрического поля Земли была преобразована в непрерывное механическое движение». Два месяца спустя они успешно эксплуатировали мотор, питающийся от воздушного электричества.

В университете Западной Вирджинии у Ефименко лаборатория, полная экзотических устройств, которые вращаются и гудят, как рой пчел. «И, в принципе, — утверждает доктор Олег Ефименко, — они могут делать все, что могут делать электромагнитные двигатели, и некоторые вещи, которые они могут делать лучше».

История[ | ]

Электрофорная машина была разработана в 1865 году немецким физиком-экспериментатором Августом Тёплером. Одновременно с Тёплером и независимо от него электрофорную машину изобрёл другой немецкий физик Вильгельм Хольц. Машина Хольца по сравнению с машиной Тёплера позволяла получать большую разность потенциалов и могла использоваться в качестве источника постоянного электрического тока. В то же время она имела более простую конструкцию[1]. Между 1880 и 1883 годами её усовершенствовал английский изобретатель Джеймс Уимсхёрст (англ.). Используемые в настоящее время для демонстраций электрофорные машины представляют собой модификации машины Уимсхёрста.

Ионный двигатель

Электростатические двигательные установки ускоряют ионизированное топливо с помощью электрического поля. Основными методами являются полевые электростатические двигатели (FEEP), коллоидные двигатели и ускорители с сеточными ионами.

В сеточных электростатических ионных ускорителях, также известных как ионные двигатели, ионы образуются в магнитоизолирующей ионизационной камере с помощью разряда постоянного тока, радиочастотной энергии или настроенного электронного циклотронного резонанса. Выход из ионизационной камеры закрыт двойной решетчатой структурой с пространством между решетками от половины до одного миллиметра, через которое подается потенциал ускорения ионов. Ионы, которые приближаются к внутренней (экранной) сетке, извлекаются из камеры и ускоряются полем между сетками. Ионная оптика устроена так, чтобы минимизировать столкновения с внешней ускоряющей сеткой.

Электроны извлекаются из камеры анодом и накачиваются источником питания на внешний катод / нейтрализатор, удерживаемый немного выше потенциала ускоряющей решетки. Электроны с катода соединяются с выходящим потоком ионов, чтобы нейтрализовать его. Нейтрализация ионного потока необходима, потому что выброс заряженных частиц с космического корабля заставляет само транспортное средство получать заряд, который влияет на работу других систем космического корабля и может вызвать постоянное повреждение. Кроме того, без нейтрализации возникающий ионный пучок будет зависать от своего собственного внутреннего потенциала. Ионные двигатели достигают скорости выхлопа в области 30 000 м с -1 (I сп = 3000 с). Космический корабль ЕКА EURECA продемонстрировал работу RITA, ионного двигателя, использующего радиочастотную ионизацию, в 1992 году. Ионные двигатели были в эксплуатации с середины девяностых годов для обслуживания станций на геостационарных спутниках. В 1998 году НАСА Deep Space 1 стало первой межпланетной миссией, использующей ионную тягу.

Ионные двигатели страдают от низкой плотности тяги (доступной тяги на единицу площади выхлопа), поскольку максимальная плотность ионного тока, которая может поддерживаться, ограничена искажениями пространственного заряда приложенного электрического поля. Одно из преимуществ движителя с эффектом Холла, выбранного для SMART-1, по сравнению с двигателем с электростатическими ионами, состоит в том, что, поскольку плазма в двигателе с эффектом Холла остается практически нейтральной из-за присутствия электронов, составляющих ток Холла, они способны выдерживать более высокие плотности ионного тока и, следовательно, предлагают большую плотность тяги.

Плазменный ракетный двигатель представляет собой тип электрического двигателя, который генерирует тягу от квазинейтральной плазмы. Этот тип двигателя малой тяги, часто генерирует источник плазмы с использованием радиочастоты или микроволновую энергию, используя внешнюю антенну. Этот факт в сочетании с отсутствием полых катодов (которые очень чувствительны к всем газам, кроме немногих благородных газов) позволяет использовать этот тип двигателя малой тяги на огромном диапазоне ракетного топлива.

ЛитЛайф

Помогите нам сделать Литлайф лучше

  • «
  • 1
  • 2
  • .
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • .
  • 71
  • 72
  • »
  • Перейти

В статье «Наша будущая движущая сила» (Our future motive power), опубликованной в декабре 1931 года, в «Everyday Science and Mechanics», Тесла предлагает схемы получения энергии путем преобразования тепла среды, а именно, геотермальных и морских источников тепла. Сегодня мы можем сказать, что идеи Тесла начинают реализовываться. Речь идет не только о природных источниках горячего пара с температурой 200 градусов Цельсия, но также о низкотемпературных преобразователях, которые стали возможны благодаря современным бинарным турбинам. В этих устройствах, источник тепла с температурой около 90–70 градусов Цельсия, обеспечивает расширение рабочего тела (низкотемпературного рабочего тела – хладона), которое вращает турбину. Пример такой электростанции в США, мощностью 11 мегаватт, реализовала американская компания Raser Technologies. Электростанции такого типа можно строить почти везде, где есть доступ к теплу планеты, достаточно пробурить скважины глубиной примерно 150 метров и обеспечить в них циркуляцию соляного раствора, поглощающего тепло внизу и отдающего его наверху. Аналогичное решение, за счет разности температур воды в океане на разной глубине, предлагается многими современными компаниями.

Читать еще:  Вольт частотная характеристика асинхронного двигателя

Известное выражение «лучи смерти», относящиеся к пучковому оружию, Тесла предлагал понимать с другой стороны. В заметке «Тесла изобрел лучи мира» (Tesla Invents Peace Ray), New York Sun, July 10, 1934 год, репортер пишет: Тесла предлагает новый вид вооружения, настолько мощный, что никакой агрессор не посмеет начать войну. Это оружие Тесла описывал, как тонкие пучки частиц, концентрирующие в луче тоньше волоса мощность в сотни тысяч киловатт. распространяющиеся с огромной скоростью на расстояние более 200 миль. При условии, что все страны обладают таким оружием, любая, даже самая маленькая страна, сможет дать отпор агрессору. Это оружие, по мнению Тесла, могло бы стать гарантом мира на планете.

Отметим важное замечание Тесла о механизме работы мозга человека. Он считал, что в мозгу нет «устройства памяти и записи информации». Знание, как он говорил, есть «эхо», которое проявляется в ответ на «возмущение среды»: «Knowledge is something akin to an echo that needs a disturbance to be called into being».

«Неважно, что мы пытаемся сделать, не важно, в какую сторону направим мы свои усилия, мы зависим от энергии. Наши экономисты могут предложить много экономических систем управления и использования ресурсов, наши законодатели могут создать более мудрые законы и соглашения. Это значит мало. Это только временная помощь. Если мы хотим сократить нужду и нищету, если мы хотим дать каждой достойной личности то, что нужно для безопасного существования разумного существа, мы должны дать больше машин, большее энергии. Энергия – это наш оплот, первичный источник многосторонних сил. Имея в распоряжении достаточно энергии, мы можем удовлетворить большинство наших нужд и гарантировать всем спокойное и безопасное существование. Развитие и благосостояние города, успех нации, прогресс всего человеческого рода определяется имеющейся в распоряжении энергией. Мы не должны удовлетворяться просто усовершенствованием паровых и взрывных двигателей или изобретением новых батарей. У нас есть кое-что лучшее, ради чего стоит трудиться, более великая задача. Мы должны развивать способы получения энергии из источников, которые неисчерпаемы, усовершенствовать методы, не требующие потребления и затрат каких бы то ни было материалов». Эти цели и задачи ставил Тесла в 1897 году (журнал «Electrical Review»), нам есть над чем работать сегодня.

Глава 7 Работа электрического потенциального поля

Перейдем к рассмотрению устройств преобразования энергии, в которых, так или иначе, используется электрическое потенциальное поле. Начнем с электростатических моторов. Например, мотор Франклина, рис. 70, отлично вращается, хотя при этом создается ионизация воздуха, и расходуется разность потенциалов Лейденских банок. Впрочем, никто ранее подробно не анализировал эффективность мотора Франклина.

Рис. 70. Мотор Франклина

Идеальный электростатический мотор, теоретически, не уменьшает разность потенциалов первичного источника, и работает без потребления мощности. Моторы Профессора Олега Ефименко, Университет Западной Вирджинии в США (Oleg Jefimenko), работают от атмосферного электричества. Мощность в таких моторах небольшая, но они работают без батарей, и могут найти полезное применение. На рис. 71 показана схема мотора Ефименко, ротор которого изготовлен из электрета. Электреты, в данной конструкции, играют роль, аналогичную постоянным магнитам в электромагнитных приводах, создавая крутящий момент под действием электрических сил. Поскольку электреты, будучи при изготовлении поляризованы, могут затем долго сохранять свой заряд, то такие моторы представляются перспективными решениями для потребителей малой мощности.

В таких машинах нет обмоток и сердечников. Преимущества электростатических электромоторов, а также конструкций с вращением электрического поля, в том, что нет необходимости применять медь и железо в конструкции, поэтому моторы могут быть очень легкими.

Практическое применение мог бы получить электростатический генератора Вальтера Овена (Walter Owens), американского авиационного инженера, изобретателя, автора 27 патентов. В его генераторе есть первичный привод – небольшой электромотор, работающий от аккумулятора. Он вращает ротор, при этом, благодаря трению, на шерсти или синтетической ткани появляется электрический заряд. Принцип электризации трением всем нам знаком, но мало кто задумывался о том, что на создание разделения зарядов трением расходуется меньше энергии, чем получается при разряде конденсатора, в котором эти заряды накапливаются.

В схеме Овена имеется накопитель зарядов, а также преобразователь постоянного высокого напряжения в переменный ток обычного напряжения 220Вольт. Мощность генератора достаточна для обеспечения потребностей жилого дома. Автор демонстрировал свое изобретение в 2007 году инвесторам, создана компания Owens and Company LLC и проект развивается. Другие конструкции электростатических моторов можно найти в Интернет.

Классический пример из области свободной энергии – эффект Герца-Квинке-Сумото, суть которого состоит в самовращении диэлектрического ротора (цилиндра или шара), погруженного в диэлектрическую жидкость или газ, в которой создано постоянное электрическое поле. Эффект обнаружил Герц в 1881 году, схема показана на рис. 72. Здесь Е1 диэлектрическая проницаемость жидкости, е2 диэлектрическая проницаемость ротора, 71 проводимость жидкости и 72 проводимость ротора соответственно. Соотношение этих величин важно для условий самовращения (это «условия Поливанова»).

Эффект был заново открыт немецким ученым Квинке (G. Quincke). Японский ученый Сумото (I. Sumoto) подробно исследовал его в 1955. Современные исследования, в данном направлении, проведены К. М. Поливановым, Москва.

Позволю некоторые предположения по причинам данного явления. Вращение производится силами потенциального поля, при этом не требуется затрат мощности от источника. Существуют различные условия поляризации ротора и молекул окружающей его среды, в силу различной проницаемости и проводимости. Условие Поливанова, необходимое для обеспечения самовращения ротора, это соотношение проницаемости ротора и среды, а также проводимости ротора и среды: Е2/Е1 > 72/71.

Важное замечание: Молекулы среды, в которую погружен ротор, поляризуются как полем электродов, так и полем ротора. Ротор окружен суммарным полем молекул и электродов. Среда связана с ротором в поверхностном слое. Запаздывание переполяризации поверхностного слоя обуславливает эффект самовращения.

Электростатический двигатель литовченко как собрать

Есть много способов получить свободную энергию из земли, только некоторые из них описаны ниже. Эти устройства, если они правильно собраны, способны забрать энергию земли, которую многие называют эфир или статическим электричеством, они действуют как высокоэффективные земляные батареи. Эфир проходит через пластик, древесину и т. д. Изучите и исследуйте эти способы они реальнее, чем Вы можете думать. Вы можете научиться получать достаточную мощность для Вашего дома!

Эксперимент №1, Как монтировать 12 vdc устройство.

  1. Вы можете использовать медные трубки диаметром 1 или 3/4″, длиной 4—12″ .
  2. Затем покройте лаком (который Вы можете купить в любом хозяйственном магазине) наружную поверхность трубки. (НЕ КРАСЬТЕ ВНУТРЕННЮЮ ЧАСТЬ.), просушите в течение 24 часов.
  3. Используя молоток, забейте трубки в землю, оставляя до 1″ над поверхностью грунта. Не позволяйте наружной поверхности трубки касаться земли. Почва должно быть влажной.
  4. Теперь удалите каждую трубку и поместите толстую пленку на дно. Пленка не должна плотно прилегать к трубке, тогда дождевая вода сможет свободно вытекать из трубки, не позволяйте снаружи меди касается земли.
  5. Вставьте каждую трубку назад в те же самые отверстия. Поместите 2″ цинковый стержень (или длинный оцинкованный болт) в центр каждого трубки. Цинк «–» ОТРИЦАТЕЛЬНЫЙ,а медь «+» ПОЛОЖИТЕЛЬНЫЙ ЭЛЕКТРОДЫ.
  6. Теперь соедините их последовательно, чтобы получить 12 вольт, используйте зажимы или припой для соединения. Места пайки необходимо покрыть лаком для защиты от окисления. Дождь пополнит Ваши земные батареи. Чтобы получить большой ампераж с этим типом батарей, просто добавляют больше ячеек. Соедините все ряды (примерно по 12 ячеек в каждом) параллельно, добавьте так много рядов, пока не добьетесь нужной силы тока. Это может быть очень мощное устройство свободной энергии для вашего дома или других целей. Вы будете получать энергию не только от земной батареи, но также собирать через землю энергию эфира / статические и радиоволны.
  7. Чем больше Вы используете медных трубок, тем большей силы тока и напряжения Вы можете добиться.

ЗАМЕТЬТЕ: не красьте 10-футовую медную ячейку. Чем больше наружная сторона медной трубки контактирует с землей, тем лучше. Для более высокой силы тока и выходной мощности, используйте цинковый или алюминиевый штырь диаметром 10/16” , который составляет 1/16” площади меди.

Читать еще:  Двигатель 21213 карбюратор работает перебоем

Преимущества энергии земляной батареи

  1. Свободная энергия.
  2. Большой срок службы.
  3. Сбор энергии эфира.
  4. Ячейки пополняются вне погоды, от дождя или разрядов молнии.

Эксперимент №3, Как монтировать 12vdc-устройство.

Это — простой способ произвести больше силы тока, но не практичный, мы только показываем Вам это, чтобы ознакомить Вас. Чем глубже ячейки находятся в земле, а также чем ближе медный и цинковый электроды располагаются друг к другу, тем большую силу тока Вы можете получить. Если Вы действительно решите построить это, то необходимо выполнить следующие требования:

Все соединения должны быть хорошо пропаяны, ячейки должны находиться достаточно глубоко в земле. Наружная поверхность медных трубок должна быть хорошо изолирована от земли (лаком, краской, пластиком, в крайнем случае, изолентой). Ваша цель создать очень сильный земной конденсатор / батарею. Это позволит Вам захватить и собирать энергию земли, а во время грозы энергия, которую Вы можете собрать, поразит Вас! Вы должны использовать антенну на цинковом или медном электроде. Будьте осторожны собирая заряд, это может убить Вас. Во время грозы советую соединить батарею с конденсатором большой емкости. Один полюс подсоединить через диод, соблюдая, естественно, полярность. Эти земляные батареи могут аккумулировать и держать тысячи вольт. Так будьте осторожны. Используйте резиновые перчатки и другие средства защиты. Мы не ответственны за любой вред, который Вы можете причинить себе и/или окружающим, Вы строите все на свой страх и риск.

Эксперимент №4 метод 6-футового расстояния (старый способ).

Есть много патентов США, которые были выпущены еще в 1800-х годах, один из них был выдан г-ну Дэкману. Он обнаружил, что если взять несколько небольших кусков цинковых и угольных стержней и вставить их в землю рядом друг с другом и подключить их в ряд (так же, как батареи), вы получите не большое усиление на всех.

Но если Вы поместите их на расстоянии 6 футов, то Вы получите выигрыш в напряжении, и они не будут уравновешивать друг друга. Т.О. Вы можете поместить их последовательно, чтобы увеличить ваше напряжение и ваши вольт-амперы. Теория говорит о том, что существуют своего рода естественные вихри энергии, который занимает примерно столько пространства для каждого блока или ячейки.

При использовании этого метода потребуется много земли, что многие люди просто не имеют, за исключением фермеров.

Есть гораздо более эффективные способы по сравнению со старым методом, как вы увидите далее. Старым способом или нашими новыми методами, вы можете получить столько свободной энергии, сколько захотите, с напряжением или силой тока какие вам необходимы. Чем выше желаемое значение тока, тем больше затрат. Мы стараемся улучшить наши изобретения, чтобы снизить стоимость.

Применение земляных батарей в реальных условиях:

  • Дорожные маркеры
  • Подсветка тротуарной плитки
  • Новый участок в тульской области
  • Установка в Карелии
  • Трасса А181 Скандинавия
  • Полигон МАДИ
  • Установка в тульской области
  • Установка в дагестане
  • Трасса М4 «ДОН» 76-й км
  • Пешеходный переход — Егорьевское ш., г.Егорьевск
  • Пешеходный переход — Переславль
  • Тестовая установка в Узбекистане
  • Можайское ш. 70-й км

Метод листового конденсатора

Этот метод гораздо лучше, чем при использовании труб или стержней. С помощью меди и цинка или листовой алюминиевой фольги, вы получите гораздо больше тока из вашей системы!

Энергию вы будете собирать из 3 разных источников:

  1. Кислот в почве и воде
  2. Энергия, которая передается от самой земли(теллурические токи)
  3. Энергия, которая передается с неба и пространства.

Все это может показаться невероятным, но это правда, и это факт! Чем больше пластин, которые Вы добавляете, тем больше энергии вы получите! Медные листы является положительным электродом, они должны быть направлены вниз, к земле (см. рис. ниже). Алюминиевые или цинковые листы является отрицательными электродами и должны быть направлены вверх! Между листами-электродами необходимо проложить лист хлопчатобумажной ткани или другое пластиковое сетчатое изолирующее покрытие.

Изготовьте изолирующее основание из дерева (или другого изоляционного материала). Установите на основание 4 деревянных (или другой изоляционный материал) направляющих штыря.

Используйте для электродов 8 листов размером 1/2″ x 11″.

Выполните по два отверстия в каждом медном и алюминиевом листе, расстояние между отверстиями равно расстоянию между двумя направляющими штырями основания. Каким-либо доступным для вас методом от каждой пластины необходимо выполнить отвод для подключения. Соберите своеобразный бутерброд, насаживая медные листы на левые направляющие и алюминиевые на правые. Затем необходимо изготовить из дерева верхнюю крышку, аналогичную деревянному основанию.

Собрав конструкцию, стяните её скотчем. Просверлите с двух противоположных сторон сквозные отверстия в крышке и основании, вставьте шпильки или болты и стяните конструкцию. Удалите скотч. Соедините провода, полейте собранный конденсатор водой и закопайте в землю.

Опять же, чем больше листы металла добавлены, тем больше мощность, которую Вы получите! Вы собираете больше чем простая батарея. Лист медной пластины является положительным электродом, алюминиевого листа является отрицательным. Есть много конструкций этого типа земляных батарей. Ниже приведены другие формы батарей.

Соленоидный накопитель земной энергии.

Модель №1.

Возьмите 5/16” цинковый или алюминиевый стержень, длиной 7.5” . Для намотки используйте не изолированный медный провод №27. Цинковый стержень покройте бумагой в один слой, используйте очень маленькие кусочки ленты для фиксации. Теперь наматывайте медный провод по бумаге, не забудьте использовать не изолированную медь! Закрепите скотчем один конец медного провода к концу цинкового или алюминиевого стержня и начните медленно наматывать. Намотку делайте виток к витку. Ширина бумажной изоляции составляет 5,5”, длина намотки 4”.

Закончив, первый слой намотки,обмотайте его слоем бумаги. Зафиксируйте её небольшими кусочками скотча. Теперь начните свой 2-ой слой намотки, повторите этот тот же самый процесс, пока у Вас не будет 10 слоев, (больше слоев— лучше!). Медь не должна касаться цинка или алюминия. Когда закончите намотку, закрепите концы провода клеем или эпоксидной смолой. Это — одна полная ячейка, имейте в виду, что это — маленькая опытная модель, для получения большей мощности Вы должны построить большие ячейки, используя медный провод большого сечения. Такие ячейки могут быть соединены последовательно, в дальнейшем, мы соединим их с помощью диодов, конденсаторов, электронных ключей или ручных переключателей. Если вы сделаете 20 и более ячеек и попытаетесь соединить их последовательно (без диодов, конденсаторов и переключателей), то элементы будут гасить друг друга. Для проверки опустите элемент в воду. Имейте в виду, что вода должна пропитать каждый слой элемента. Вы можете также использовать в качестве центрального электрода цинковую или алюминиевую трубку.

Бумага служит не долго, поэтому лучше использовать какой-нибудь пластиковый диэлектрик, поглощающий воду (к примеру, ткань, которой покрывают газоны после посадки семян, или что-то на подобии— синтетическое пористое).

Модель №2

В этом варианте мы используем обмедненную проволоку или медный провод №27, только с изоляцией— ( лак). Намотка производится так же, как в модели №1, только после намотки каждого слоя меди, этот слой зачищается сверху наждачной бумагой для снятия слоя лака. Такой элемент более эффективен, чем 1-й.

Модель №3

То же самое как №1, но наоборот! Вы можете использовать алюминиевый провод и медный стержень или трубку. Используйте 3/4” медную трубку, бумажную или пластиковую межслойную изоляционную и алюминиевую проволоку.

Катушечный земляной конденсатор.

Этот тип земляной батареи очень эффективен. Бумага не очень хороший изолятор высокого напряжения! Если вы желаете собрать энергию земли в бурю и грозу необходимо использовать толстый диэлектрик. Металлы должны быть расположены должным образом для сохранения высокого напряжения.

Последовательное соединение элементов

На рисунке ниже показано, как соединить ячейки последовательно, так чтобы получить высокое напряжение без гашения элементами друг друга. Этот способ позволяет не использовать пластиковую подставку (пленку) под трубчатые элементы (начало статьи).

Используйте электролитические конденсаторы, чтобы накопить заряд, прибывающий из каждой ячейки, затем соедините их, последовательно, используя коммутатор.

P.S. (от редакции) Все вышеперечисленные конструкции земляных батарей несомненно рабочие, мы проверяли каждую из них, но заявленные выходные данные сильно отличаются в меньшую сторону, как по мощности так и по «времени жизни».

На сегодня у нас в производстве находится три конструкции, которые сертифицированы и были сделаны по «мотивам» данной публикации, но претерпели глубокую модернизацию, как конструктивно, так и по используемым материалам. В ближайшее время мы обязательно опубликуем «конструктив» наших земляных батарей. Большое количество экспериментов подтвердили — использовать теллурические токи земли можно и нужно, это восполняемый, природный ресурс, и применение в качестве сигнальной подсветки, просто не заменимо.

Применение земляных батарей в реальных условиях:

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector