Двигатель внутреннего сгорания двс устройство работа - Авто Журнал
Aklaypart.ru

Авто Журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Двигатель внутреннего сгорания двс устройство работа

Устройство двигателя внутреннего сгорания

Современный двигатель внутреннего сгорания далеко ушел от своих прародителей. Он стал крупнее, мощнее, экологичнее, но при этом принцип работы, устройство двигателя автомобиля, а также основные его элементы остались неизменными.

Двигатели внутреннего сгорания, массово применяемые на автомобилях, относятся к типу поршневых. Название свое этот тип ДВС получил благодаря принципу работы. Внутри двигателя находится рабочая камера, называемая цилиндром. В ней сгорает рабочая смесь. При сгорании смеси топлива и воздуха в камере увеличивается давление, которое воспринимает поршень. Перемещаясь, поршень преобразует полученную энергию в механическую работу.

Опытный образец — двухтактный линейный генератор

Оптимальное решение преобразования энергии нашел профессор Питер Ван Блариган. Он оснастил поршень свободнопоршневого двигателя кольцевыми магнитами из неодимового сплава, а на внешней стенке цилиндра-статора поместил обмотку. Таким образом, появление сверхмощных магнитов из неодимового сплава позволило обойтись без механической связи поршня с трансмиссией, создав генератор электричества. Ван Блариган построил опытный образец — двухтактный линейный генератор мощностью 40 кВт. Термический КПД двигателя-генератора, работающего на пропане достигал 56%. Причем, этот двигатель мог работать не только на пропане, но и на бензине, водороде, дизельном топливе и спирте.

Высокий КПД такого двигателя обеспечивается за счет снижения паразитных внутренних потерь. В конструкции отсутствуют вращающиеся массы, которые имеют значительную инерцию. На поршни не действуют боковые силы, которые обычно прижимают их к стенкам цилиндра, благодаря чему уменьшается трение. Подшипники коленчатого вала и шатунов, поршневые пальцы, распределительный вал, кулачки и клапаны — все те узлы классического двигателя, в которых существует трение, — отсутствуют. Кроме того, на каждый цикл работы двигателя со свободным поршнем приходится два рабочих такта. При этом свободнопоршневой двигатель гораздо компактнее, проще и надежнее обычного ДВС. Эффективность преобразования энергии может быть увеличена за счет оптимизации степени сжатия. Кроме того, ключевые характеристики двигателя со свободным поршнем, такие как выходная мощность и эффективность системы могут быть улучшены за счет управления положением поршня.

Устройство автомобилей

Анализ развития энергетических установок для автомобильного транспорта показывает, что в настоящее время двигатель внутреннего сгорания (ДВС) является основным силовым агрегатом, и его дальнейшее совершенствование имеет большие перспективы.

Автомобильный поршневой двигатель внутреннего сгорания представляет собой комплекс механизмов и систем, служащих для преобразования тепловой энергии сгорающего в цилиндрах топлива в механическую работу.

Основу механической части любого поршневого двигателя составляют кривошипно-шатунный механизм (КШМ) и газораспределительный механизм (ГРМ) .
Кроме того, тепловые двигателя оснащены специальными системами, каждая из которых выполняет определенные функции по обеспечению бесперебойной работы двигателя.
К таким системам относятся:

  • система питания;
  • система зажигания (в двигателях с принудительным воспламенением рабочей смеси) ;
  • система пуска;
  • система охлаждения;
  • система смазки (смазочная система) .

Каждая из перечисленных систем состоит из отдельных механизмов, узлов и устройств, а также включает специальные коммуникации (трубопроводы или электропровода) .

Кривошипно-шатунный механизм двигателя

Кривошипно-шатунный механизм (КШМ) двигателя преобразует возвратно-поступательное движение поршня во вращательное движение коленчатого вала. Очевидно, что передавать вращательное движение между отдельными механизмами, агрегатами и узлами автомобиля значительно проще, чем циклическое поступательное движение, которое описывает поршень, перемещаясь в цилиндре.
Кроме того, конечное звено трансмиссии автомобиля – его колеса – перемещают автомобиль посредством вращения, поэтому назначение КШМ вполне понятно.
Можно допустить, что для транспортного средства, перемещающегося по дороге с помощью, например, шагающих устройств или циклических движителей, преобразование поступательного движения во вращательное не является обязательным. Но автомобиль — колесное транспортное средство (по определению) , что обуславливает присутствие кривошипно-шатунного механизма в конструкции автомобильного двигателя.

Газораспределительный механизм двигателя

Газораспределительный механизм (ГРМ) обеспечивает поступление в цилиндры двигателя заряда рабочей смеси (в двигателях с внешним смесеобразованием) или воздуха (в двигателях с внутренним смесеобразованием) , а также для удаления (выпуска) отработавших газов и продуктов сгорания топлива.
При этом газораспределительный механизм должен обеспечивать обмен газов в цилиндрах в строго определенное время, соответственно тактам работы двигателя, и в необходимом количестве, обеспечивающем качественный состав рабочей смеси для полного сгорания топлива и получения максимального эффекта от выделяемой при этом теплоты.

Читать еще:  Чип тюнинг двигателя mercedes e200

Система питания двигателя

В цилиндрах автомобильного двигателя сгорает смесь воздуха (точнее – кислорода, содержащегося в воздухе) и горючего, в качестве которого чаще всего используются дизельное топливо (солярка) , газовое топливо, либо бензин. Система питания предназначена для подачи топлива и воздуха в цилиндры двигателя в нужном количестве и определенных пропорциях.
Различают два основных типа систем питания двигателей: системы с внешним смесеобразованием , в которых воздух и топливо смешиваются вне цилиндра двигателя, а также с внутренним смесеобразованием , в которых топливо и воздух подаются в цилиндры раздельно и смешиваются внутри цилиндра.

К первому типу можно отнести системы питания, оснащенные специальным смесительным устройством – карбюратором, обеспечивающим распыл топлива в воздушной струе и перемешивание компонентов смеси, которая затем поступает в цилиндры двигателя. К двигателям с внешним смесеобразованием относятся некоторые типы двигателей с впрыском бензина (инжекторные двигатели с центральным или распределенным впрыском во впускной коллектор) , а также многие типы газовых двигателей.

Ко второму типу относятся дизельные и инжекторные системы питания с непосредственным впрыском, обеспечивающие заполнение цилиндров двигателя атмосферным воздухом с последующим впрыском топлива с помощью специальных устройств непосредственно в камеру сгорания, где и происходит смешивание топлива с кислородом воздуха. При этом воспламенение смеси в дизельных двигателях осуществляется посредством сильного сжатия самовоспламенением, а в инжекторных — принудительно, от искры.
Некоторые типы газовых двигателей тоже используют внутреннее смесеобразование.

Система зажигания

Назначение этой системы – принудительное воспламенение рабочей смеси в бензиновых и газовых двигателях. Дизельные двигатели не нуждаются в системе зажигания – воспламенение рабочей смеси в них осуществляется благодаря высокой степени сжатия воздуха в цилиндрах, который в буквальном смысле становится раскаленным.

В современных двигателях чаще всего используется воспламенение смеси искровым электрическим разрядом, однако, это – не единственное возможное техническое решение – так, например, в конструкциях первых тепловых двигателей внутреннего сгорания применялись запальные трубки, воспламеняющие рабочую смесь горящим веществом.
Возможны и другие способы поджигания смеси, однако, наиболее удобной для практического применения в настоящее время считается электроискровая система зажигания.

Система пуска двигателя

Система пуска обеспечивает вращение коленчатого вала двигателя при его запуске. Это необходимо для начала функционирования механизмов и систем, обеспечивающих работу двигателя – кривошипно-шатунного и газораспределительного механизмов, систем питания и зажигания.

Для запуска современных автомобильных двигателей чаще всего применяются системы пуска с помощью привода от специального электрического двигателя – стартера. Этот способ запуска двигателя внутреннего сгорания является удобным, надежным и легко осуществимым. Однако, существуют и другие технические решения этой задачи, например, посредством пневматического мотора, работающего на запасе сжатого воздуха в ресиверах (специальных баллонах) автомобиля или полученного от небольшого компрессора с электроприводом.

Простейшая система пуска двигателя – заводная рукоятка, с помощью которой водитель (или его помощник) проворачивают коленчатый вал, обеспечивая тем самым начало работы механизмов и систем двигателя. В недалеком прошлом заводная рукоятка являлась непременной принадлежностью, которую водитель брал с собой в путь. Однако, при несомненной простоте этого «устройства», комфорта и удобства использования автомобиля такой метод пуска двигателя не добавляет, поэтому в кабине современного автомобиля заводную рукоятку (или, как ее называли в шутку водители – «кривой стартер») вы найдете вряд ли.
Кроме того, с помощью ручного пуска сложно запустить дизель – не позволяет высокая степень сжатия и вероятность травмирования водителя при запуске.

Читать еще:  Электромагнит останова двигателя принцип работы

Система охлаждения двигателя

Как и следует из названия, эта система предназначена для поддержания баланса температуры работающего двигателя. Сжигание рабочей смеси в цилиндрах сопровождается сильным нагревом узлов и деталей двигателя, которые нуждаются в постоянном охлаждении, чтобы избежать перебоев в работе и поломок, обусловленных, например, температурными расширениями металла или даже прогоранием деталей и элементов конструкций.
Наиболее распространены два типа систем охлаждения, применяемые в автомобильных двигателях – жидкостная и воздушная; о принципах их действия можно догадаться по названию.

Из теплотехники известно, что для эффективного охлаждения двигателя необходим теплообменник, имеющий большую площадь поверхности для передачи тепла. В двигателях с жидкостным охлаждением в качестве такого теплообменника используется радиатор, состоящий из большого количества трубок, сквозь которые перемещается нагретая жидкость, отдавая тепло стенкам. Суммарная площадь поверхности трубок в радиаторе очень большая, а эффективность отвода тепла повышается специальным вентилятором, установленным рядом с радиатором.

В двигателях с воздушным охлаждением для этих целей применяют оребрение поверхностей наиболее нагреваемых деталей (цилиндров и их головок) , в результате чего площадь теплообмена значительно увеличивается.
Воздушные системы охлаждения на современных быстроходных двигателях применяются редко из-за низкой эффективности (по сравнению с жидкостной системой охлаждения) . Чаще всего охлаждение воздухом используют в низкооборотистых, мотоциклетных или небольших двигателях внутреннего сгорания, не предназначенных для выполнения тяжелой механической работы, а также для работы в условиях хорошего обдува (самолетные ДВС) .

Система смазки двигателя

Система смазки предназначена для уменьшения потерь механической энергии на преодоление сил трения, возникающих между сопрягаемыми подвижными деталями в кривошипно-шатунном и газораспределительном механизмах.
Кроме того, смазывание деталей способствует уменьшению их износа и частичному охлаждению.

Чаще всего в конструкции автомобильных двигателей применяется смазка деталей под давлением, когда из отдельного резервуара масло подается по трубопроводам и каналам с помощью насоса к деталям, нуждающимся в смазке.
Некоторые детали механизмов смазываются благодаря разбрызгиванию масла или посредством периодического окунания в масляную ванну.

Представленный ниже видеоролик поможет лучше понять общее устройство поршневого двигателя внутреннего сгорания.

Системы двигателя

Моторы имеют нескольких систем, выполняющих свои функции.

ГРМ газораспределительный механизм

Состоит из распредвала, толкателей, коромысла, клапанов, привода, штанги и распределительного вала. Необходим для подачи воздуха или смеси , а также выпуска газов.

Газораспределительный механизм

Система смазки

Подает масло для снижения изнашивания деталей и уменьшения трения.

Включает в себя:

  • масляный насос;
  • фильтр;
  • поддон картера двигателя с маслозаборником;
  • радиатор;
  • каналы и магистрали.

Устройство системы смазки двигателя

Система подачи топлива

Доставляет топливо из бака к рейке. Состав:

  • штуцер контроля давления;
  • рампа с топливными форсунками;
  • топливопроводы;
  • электробензонасос;
  • регулятор давления топлива.

Строение топливной системы автомобиля

Охлаждающая система

При работе мотора его детали нагреваются. Для поддержания температурного режима служит система охлаждения. Она выполняет и ряд других функций, например, нагрев воздуха в системе вентиляции.

Состоит из следующих узлов:

  • датчик температуры;
  • соединительные патрубки;
  • блок цилиндров;
  • рубашки охлаждения;
  • радиатор;
  • вентилятор;
  • расширительный бачок;
  • термостат;
  • помпа.

Система охлаждения двигателя

В ДВС используется жидкостное (водяное) и воздушное охлаждение.

Выхлопная система

Предназначена для охлаждения цилиндров , выпуска из них газов, снижения токсичности и шума. Состоит из глушителя, каталитического конвертера и выпускного коллектора.

Выхлопная система автомобиля

Для продления срока службы мотора и во избежание непредвиденных поломок необходимо проводить профилактическое техническое обслуживание различных узлов движка с интервалами, указанными производителем в руководстве пользователя.

Читать еще:  Чем растворяются отложения в двигателе

Что такое мертвая точка и ход поршня

Вначале познакомимся с понятиями мертвых точек и рабочего хода. Это поможет разобраться, из каких частей состоит рабочий цикл двигателя.

Две мертвые точки — это крайние положения поршня. В этих положениях поршень меняет направление движения на противоположное. Выделяют две мертвые точки – верхнюю и нижнюю (рис. 5). Расстояние между ними называют ходом поршня.

ДВС — устройство, принцип работы, характеристики

Ключевым элементом двигателя, работающего за счёт внутреннего сгорания нефтепродуктов, является поршень. По внешнему виду он напоминает пустотелый стакан средних размеров.

Голова поршня смотрит вверх. Юбка или направляющая часть имеет неглубокие канавки. В этих отверстиях фиксируются поршневые кольца. Эти элементы обеспечивают герметичность всей системы. Именно в ней при работе моментально сгорает бензиново-воздушная смесь.

Кольца играют роль уплотнителей. Нижнее кольцо является маслосъемным, а верхнее — компрессионным. Именно последнее отвечает за то, чтобы смесь имела высокую степень сжатия.

Принцип работы

Топливная смесь попадает внутрь системы из карбюратора (в некоторых двигателях из инжектора). Сжатие происходит при движении поршнем вверх. За поджигание отвечает свеча.

При вырабатывании газа поршень уходит резко вверх. Как результат тепловая энергия переходит в электрическую. Движение поршня передаётся валу. Данный процесс становится возможным благодаря уникальной конструкции юбки поршня. В ней установлен палец с верхней частью в виде шатуна.

Шарнир фиксируется на кривошипе, последний является частью коленчатого вала. Коленвал вращается за счёт опорных подшипников. Они базируются в картере двигателя, работающего на принципе внутреннего сгорания.

Поршень воздействует на шатун, за счёт этого начинает двигаться коленвал. Энергия движения уходит по направлению к трансмиссии. Лишь пройдя этот перевалочный пункт, она через сложную систему шестерёнок приводит в движение колеса.

У поршня есть две мёртвые точки. Так называются два крайних положения, в которых на долю секунды задерживается элемент. Расстояние между двумя точками называется ходом.

Характеристики

Суммарный объём цилиндров двигателя, работающего за счёт внутреннего сгорания топлива, измеряется в литрах. Важным показателем является степень сжатия. У устройств, функционирующих за счёт карбюратора, данный показатель находится в диапазоне от 6 до 14 СС, для дизеля данный показатель порядка 16—30.

Объём и сила сжатия определяют мощь двигателя, который функционирует за счёт системы внутреннего сгорания топливной жидкости. Совокупность этих параметров также определяет экономичность устройства.

Одноцилиндровые двигатели работают неравномерно. Резко ускоряется ход поршня при взрывном сгорании. Как только, он приближается к НМТ — происходит его замедление. Диск-маховик позволяет частично погасить данную неравномерность. Как результат момент вращение стабилизируется.

КАК РАБОТАЕТ ДВИГАТЕЛЬ ВНУТРЕННЕГО СГОРАНИЯ

При работе поршневого двигателя внутреннего сгорания поршень совместно с верхней головкой шатуна движется в цилиндре поступательно (вверх – вниз), при этом коленчатый вал совместно с нижней головкой шатуна совершает вращательные движения. У подавляющего большинства двигателей, если смотреть на двигатель со стороны шкива, вращение коленчатого вала осуществляется по часовой стрелке. За один оборот коленчатого вала (360°) поршень в цилиндре совершает два хода (один ход вверх и один вниз).

При постоянной скорости вращения коленчатого вала двигателя, поршень в цилиндре движется с ускорением – замедлением. Наименьшие скорости движения поршня будут наблюдаться при его «крайних» положениях в цилиндре — в верхней (ВМТ) и нижней части (НМТ). В верхней и нижней части цилиндра поршень «вынужден» сделать остановку, чтобы поменять направление движения.


Рабочий цикл четырехтактного двигателя: а) впуск; б) сжатие; в) рабочий ход; г) выпуск.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector