Что такое генераторный режим работы двигателя - Авто Журнал
Aklaypart.ru

Авто Журнал
4 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое генераторный режим работы двигателя

Работа асинхронного двигателя в генераторном режиме

Все электрические машины функционируют в соответствии с законом электромагнитной индукции, а также с законом взаимодействия проводника с током и магнитного поля.

Электрические машины по типу питания подразделяются на машины постоянного и переменного тока. Постоянный ток создается за счет источников бесперебойного питания. Для машин постоянного тока характерно свойство обратимости. Это означает, что они способны работать как в двигательном, так и в генераторном режиме. Данное обстоятельство можно объяснить с точки зрения аналогичных явлений в работе обеих машин. Более детально конструктивные особенности двигателя и генератора рассмотрим далее.

Если во вращающемся магнитном поле разместить на валу ротора магнит так, чтобы ось, соединяющая его полюса, была направлена вдоль вектора индукции магнитного поля, то вращающееся магнитное поле вовлекает во вращение магнит вместе с валом ротора, который вращается синхронно с магнитным полем. Однако для этого необходимо раскрутить ротор до скорости вращения поля (условие синхронизма). На ротор действует вращающий момент, и энергия тока превращается в механическую энергию электродвигателя, который получил название синхронного .

Синхронные машины используются в качестве источников электрической энергии (генераторов), электродвигателей и синхронных компенсаторов.
Синхронные генераторы гидроэлектростанций вращаются с помощью гидротурбин и носят название гидрогенераторов. Кроме электростанций синхронные генераторы находят применение в установках, требующих автономного источника питания.
Синхронные двигатели переменного тока используются с механизмами средней и большой мощности при редких пусках, требующих постоянной частоты вращения. К таким механизмам относятся компрессоры, вентиляторы, насосы и т.д.
Синхронный компенсатор предназначается для улучшения коэффициента мощности электротехнических установок (компенсации индуктивной реактивной мощности).

Схема замещения синхронного двигателя и векторная диаграмма

На рисунке Xc — синхронное индуктивное сопротивление; θ — угол нагрузки

В соответствии со схемой уравнение имеет вид:

Характеристика зависимости момента двигателя от угла нагрузки имеет вид синусоиды и выражает работу как двигательного, так и генераторного режима.
С целью получения запаса устойчивости за номинальный момент синхронного двигателя принимается 0,5М н , которому соответствует угол θ =30°.

Конструктивно синхронная машина состоит из статора и ротора. Статор аналогичен статору асинхронной машины, а ротор представляет собой постоянный магнит, поле которого создается обмоткой возбуждения, по которой пропускается постоянный ток. Питание обмотки возбуждения осуществляется через скользящий контакт между контактными кольцами и неподвижными щетками. Особенностью синхронной машины является возможность работы как в режиме двигателя, так и в режиме генератора.
Частота ЭДС переменного тока в синхронной машине зависит от частоты вращения ротора и числа пар полюсов, f1 = р n /60. Действующее значение ЭДС, индуцируемой в проводниках

Взаимодействие вращающегося поля статора и поля постоянного магнита ротора вызывает появление вращающего момента, вследствие чего ротор вращается в том же направлении, что и поле статора ( n1 = n ). Скольжение синхронной машины равно нулю.


Важным преимуществом синхронного двигателя является способность регулировать потребляемую из сети реактивную мощность путем изменения тока возбуждения. Рассмотрим зависимости тока статора двигателя от тока возбуждения.
При перевозбуждении I дв имеет емкостной характер, а при недовозбуждении — индуктивный. Таким образом, синхронный двигатель может быть использован в качестве компенсирующего устройства для регулирования реактивной мощности.
Характеристики имеют границу устойчивости, вдоль которой уменьшение тока возбуждения приведет к опрокидыванию двигателя или «выпаданию из синхронизма». Граница устойчивости соответствует режиму Мдвген .

Недостатком синхронного двигателя является необходимость возбудителя для запуска, так как при равенстве синхронной частоты вращения поля статора и частоты вращения поля ротора пусковой момент отсутствует. Наиболее распространен асинхронный запуск. В этом случае на полюсах двигателя размещается короткозамкнутая обмотка. При пуске статор подключают к сети. Возникающее магнитное поле индуцирует в этой обмотке ЭДС и токи, в результате чего создается электромагнитный момент, как и у асинхронного двигателя. При этом обмотка возбуждения отключена от источника постоянного тока, но замкнута на активное сопротивление с целью уменьшения напряжения на ее зажимах при пуске. При достижении двигателем частоты вращения, близкой к синхронной, обмотка возбуждения переключается на источник постоянного тока. В этом случае говорят, что двигатель «втянулся в синхронизм».

Генераторный режим синхронной машины

Так как выражения электромагнитной мощности и момента у синхронной машины аналогичны и в двигательном и в генераторном режимах, то достаточно рассмотреть генераторный режим синхронной машины.
При работе синхронной машины в качестве генератора можно регулировать магнитный поток Ф0 и пропорциональную ему Е0 , изменяя ток возбуждения.
Зависимость Е0 = f(Iв ) называется характеристикой холостого хода генератора.
Остаточная ЭДС у синхронного генератора равна 5-10 В.
Совпадение токов в проводниках по фазе с ЭДС будет только при активной нагрузке,
При включении статора на сопротивление нагрузки по обмотке пойдет ток, который создаст поле, вращающееся относительно статора и неподвижное относительно поля возбуждения основного потока ротора Ф0 . Совпадение токов в проводниках по фазе с ЭДС будет только при активной нагрузке, при индуктивной ток отстает на 90°, при емкостной опережает на 90°. Рост напряжения при емкостной нагрузке связан с подмагничивающим действием реакции якоря (статора), а снижение при индуктивной нагрузке — размагничиванием.
Упрощенное уравнение электрического состояния одной фазы синхронного генератора без учета поля рассеяния якоря имеет вид:

Читать еще:  Асинхронный двигатель характеристики размеры

где Е0 — ЭДС холостого хода.
Данному выражению соответствуют схема замещения ( рис. а) и векторная диаграмма (рис. б). Из диаграммы следует, что Е0 соответствует магнитному потоку ротора Ф0 , а напряжение U — результирующему магнитному потоку Ф. Отсюда следует, что в генераторном режиме Ф0 опережает Ф на угол θ .

Основной режим работы генератора нагрузочный. Пренебрегая потерями в сопротивлении обмотки якоря, получим из векторной диаграммы значение cos ψ между напряжением и Е0 :

С учетом этого выражения получим зависимость для определения электромагнитной мощности:

Момент равен отношению мощности к частоте вращения:

Выражение в скобках соответствует максимальному моменту Мmax , причем .
Зависимости электромагнитной мощности и момента синхронной машины при различных токах возбуждения показаны на рисунке.
В синхронном генераторе с активно-реактивной нагрузкой при определении электромагнитного момента необходимо учитывать фазовый сдвиг тока относительно магнитного потока или напряжения. Тогда выражение для момента

Синхронный генератор в качестве источника электрической энергии переменного тока включают в распределительную сеть параллельно. При параллельной работе генератора с системой большой мощности его частота и напряжение, а также угловая скорость должны оставаться неизменными при любых изменениях как нагрузки, так и тока возбуждения и момента первичного двигателя. Активную мощность, отдаваемую генератором в сеть, можно регулировать только изменением момента первичного двигателя, а реактивную — изменением тока возбуждения.

Процесс изготовления

Для этой цели может использоваться механизм из бытовой техники, например, со стиральной машинки. Сначала снимается верхний слой из сердечника двигателя, чтобы открылся доступ ко всем составляющим элементам. После этого по всему сердечнику нужно проделать дополнительные отверстия и сделать небольшое углубление.

Из ротора снимаются размеры и создаётся шаблон в виде полосы, соответствующий реальным параметрам механизма. На каждый полюс образовавшегося пространства нужно прикрепить неодимовой магнит. Для процесса может потребоваться от 8 до 10 магнитов.

Зафиксировать магниты лучше суперклеем, но можно применять и другие варианты из доступных подручных средств. Для герметизации устройства ротор можно обернуть бумагой и залепить торцовую часть пластилином.

Свободные места между магнитами нужно обработать используя эпоксидную смолу. Поле того, как заливка высохнет, можно снять бумажную оболочку, в которую и заливалась смесь. После этого начинается этап шлифовки поверхности ротора. Деталь нужно зафиксировать в тиски. Далее, определяется состояние проводов и происходит тестирование созданного генератора.

Процесс преобразования асинхронного двигателя в генератор такого же типа завершён. Применять устройство можно в разных вариантах работ.

Что касается оценки уровня эффективности, то генератор из трёхфазного двигателя в этом плане ничем не отличается от асинхронного типа. Одним из плюсов первого варианта является наличие конденсаторной батареи, улучшающей процесс работы генератора и по своей структуре считающейся одним из наиболее сложных технических элементов устройства.

Уравнения состояния и структурная схема асинхронного электродвигателя

Систему уравнений АД представим записанной в форме Коши, одновременно заменяя токи обмоток через функции потокосцеплений.

Или, подставляя выражения для токов, получаем:

Подставляем полученные значения токов и момента в уравнения и, обозначая D 1 = L 1 L 2L 2 m , получаем:

Последние уравнения можно рассматривать как уравнения состояния АД. В качестве переменных состояния здесь выступают проекции потокосцеплений на ортогональные оси и угловая частота вращения ротора. Внешними воздействиями на двигатель являются напряжения статора и момент сил сопротивления.

Эти уравнения нелинейны (содержат произведения переменных состояния) и решения в общем виде не имеют. Переходные процессы АД обычно исследуют моделированием на ЭВМ.

Оцениваем уровень эффективности — выгодно ли это?

Как видите, заставить электродвигатель генерировать ток можно не только в теоретических измышлениях. Теперь надо разобраться, насколько оправданы усилия по «изменению пола» электрической машины.

Во многих теоретических изданиях главным преимуществом асинхронных генераторов представляют их простоту. Честно говоря, это лукавство. Устройство двигателя ничуть не проще устройства синхронного генератора. Конечно, в асинхронном генераторе нет электрической цепи возбуждения, но она заменена на конденсаторную батарею, которая сама по себе является сложным техническим устройством.

Зато конденсаторы не надо обслуживать, а энергию они получают как бы даром – сначала от остаточного магнитного поля ротора, а потом – от вырабатываемого электрического тока. Вот в этом и есть главный, да и практически единственный плюс асинхронных генераторных машин – их можно не обслуживать. [attention type=green]Такие источники электрической энергии применяются в домашних автономных электростанциях, приводимых в действие силой ветра или падающей воды.[/attention]

Еще одним преимуществом таких электрических машин является то, что генерируемый ими ток почти лишен высших гармоник. Этот эффект называется «клирфактор». Для людей далеких от теории электротехники его можно объяснить так: чем ниже клирфактор, тем меньше тратится электроэнергии на бесполезный нагрев, магнитные поля и прочее электротехническое «безобразие».

У генераторов из трехфазного асинхронного двигателя клирфактор обычно находится в пределах 2%, когда традиционные синхронные машины выдают минимум 15. Однако учет клирфактора в бытовых условиях, когда к сети подключены разные типы электроприборов (стиральные машины имеют большую индуктивную нагрузку), практически невозможен.

Читать еще:  Чем чревато если двигатель троит

Все остальные свойства асинхронных генераторов являются отрицательными. К ним относится, например, практическая невозможность обеспечить номинальную промышленную частоту вырабатываемого тока. Поэтому их почти всегда сопрягают с выпрямительными устройствами и используют для зарядки аккумуляторных батарей.

Кроме того, такие электрические машины очень чувствительны к перепадам нагрузки. Если в традиционных генераторах для возбуждения используется аккумулятор, имеющий большой запас электрической мощности, то конденсаторная батарея сама забирает из вырабатываемого тока часть энергии.

Если нагрузка на самодельный генератор из асинхронного двигателя превышает номинал, то ей не хватит электричества для подзарядки и генерация прекратится. Иногда используют емкостные батареи, объем которых динамически меняется в зависимости от величины нагрузки. [attention type=red]Однако при этом полностью теряется преимущество «простоты схемы».[/attention]

Нестабильность частоты вырабатываемого тока, изменения которой почти всегда носят случайный характер, не поддаются научному объяснению, а потому не могут быть учтены и компенсированы, предопределило малую распространенность асинхронных генераторов в быту и народном хозяйстве.

Принцип действия [ править ]

Как всякая электромашина, синхронная машина может работать в режимах двигателя и генератора.

Двигательный режим [ править ]

Принцип действия синхронного двигателя основан на взаимодействии вращающегося магнитного поля якоря и магнитного поля полюсов индуктора. Обычно якорь расположен на статоре, а индуктор — на роторе. В мощных двигателях в качестве полюсов используются электромагниты (ток на ротор подаётся через скользящий контакт щётка-кольцо), в маломощных, к примеру, в двигателях жёстких дисков — постоянные магниты. Существует обращённая конструкция двигателей, в которой якорь расположен на роторе, а индуктор — на статоре (в устаревших двигателях, а также в современных криогенных синхронных машинах, в которых в обмотках возбуждения используются сверхпроводники.)

Запуск двигателя. Двигатель требует разгона до частоты, близкой к частоте вращения магнитного поля в зазоре, прежде чем сможет работать в синхронном режиме. При такой скорости вращающееся магнитное поле якоря сцепляется с магнитными полями полюсов индуктора (если индуктор расположен на статоре, то получается, что вращающееся магнитное поле вращающегося якоря (ротора) неподвижно относительно постоянного поля индуктора (статора), если индуктор на роторе, то магнитное поле вращающихся полюсов индуктора (ротора) неподвижно относительно вращающегося магнитного поля якоря (статора)) — это явление называется «вход в синхронизм».

Для разгона обычно используется асинхронный режим, при котором обмотки индуктора замыкаются через реостат или накоротко, как в асинхронной машине, для такого режима запуска в машинах на роторе делается короткозамкнутая обмотка, которая также выполняет роль успокоительной обмотки, устраняющей «раскачивание» ротора при синхронизации. После выхода на скорость, близкую к номинальной (>95% — так называемая подсинхронная скорость), индуктор запитывают постоянным током.

В двигателях с постоянными магнитами применяется внешний разгонный двигатель либо частотно-регулируемый пуск, также частотное регулирование применяют на всех типах СД в рабочем режиме — например, на тяговых двигателях скоростного электропоезда TGV. Двигатели старых электропроигрывателей требовали ручного пуска — прокрутки пластинки рукой, позже в проигрывателях стали применяться асинхронные двигатели.

Иногда на валу крупных машин ставят небольшой генератор (постоянного тока или переменного тока с выпрямлением), т.н. «возбудитель», который питает электромагниты.

Частота вращения ротора [об/мин] остаётся неизменной, жёстко связанной с частотой сети [Гц] соотношением:

,

где — число пар полюсов статора, в зависимости от нагрузки машины меняется лишь угол нагрузки (угол тета) — электрический угол отставания или опережения поля возбуждения по отношению к полю якоря. При угле нагрузки более 90 электрических градусов машина выпадает из синхронизма — останавливается, если вал перегружен тормозным моментом, либо уходит на повышенные обороты, если машина работает в режиме генератора и недогружена электрической нагрузкой.

Синхронные двигатели при изменении возбуждения меняют косинус фи с ёмкостного на индуктивный. Перевозбуждённые СД на холостом ходу применяют в качестве компенсаторов реактивной мощности. Синхронные двигатели в промышленности обычно применяют при единичных мощностях свыше 300 кВт (воздуходувки, водоперекачивающие и нефтеперекачивающие насосы), к примеру, типа СТД, при меньших мощностях обычно применяется более простой (и надежный) асинхронный двигатель с короткозамкнутым ротором.

Генераторный режим [ править ]

Обычно синхронные генераторы выполняют с якорем, расположенным на статоре, для удобства отвода электрической энергии. Поскольку мощность возбуждения невелика по сравнению с мощностью, снимаемой с якоря (0,3. 2%), подвод постоянного тока к обмотке возбуждения с помощью двух контактных колец не вызывает особых затруднений. Принцип действия синхронного генератора основан на явлении электромагнитной индукции; при вращении ротора магнитный поток, создаваемый обмоткой возбуждения, сцепляется поочередно с каждой из фаз обмотки статора, индуцируя в них ЭДС. В наиболее распространенном случае применения трехфазной распределенной обмотки якоря в каждой из фаз, смещенных друг относительно друга на 120 градусов, индуцируется синусоидальная ЭДС. Соединяя фазы по стандартным схемам «треугольник» или «звезда», на выходе генератора получают трехфазное напряжение, являющееся общепринятым стандартом для магистральных электросетей.

Частота индуцируемой ЭДС [Гц] связана с частотой вращения ротора [об/мин] соотношением:

,

где — число пар полюсов ротора.

Часто синхронные генераторы используют вместо коллекторных машин для генерации постоянного тока, подключая их обмотки якоря к трехфазным выпрямителям.

Дизельная электростанция

Дизельная электростанция – это генераторная установка, которая оснащена двигателем, работающем на дизельном топливе.

Читать еще:  Что такое двигатель d4 виста ардео

Состав оборудования, входящего в комплект дизельной электростанции, приведен на ниже следующем рисунке:

где:

1 – дизельный двигатель;

2 – электрический генератор переменного тока;

3 – основание, рама или каркас, на которых крепятся все элементы электростанции;

4 – электрический шкаф, являющийся блоком управления и защиты электростанции;
5 – бак, для хранения дизельного топлива;

6 – аккумуляторная батарея, обеспечивающая запуск дизельного двигателя в работу;

7 – блок охлаждения, состоящий из радиатора и вентилятора. В радиаторе циркулирующая жидкость охлаждается, вентилятор монтируемого на валу основного, дизельного двигателя.

8 – выхлопная труба, обеспечивающая отвод отработанных газов;

9 – муфта, обеспечивающая соединение между валом двигателя и валом электрического генератора.

У разных моделей дизельных электростанций запуск двигателя может быть осуществлен отличным, чем на приведенной схеме, образом. Для этих целей может быть использован пусковой двигатель («пускач»), работающий на бензине или кик-стартер, приводимый во вращение обслуживающим персоналом.

Муфты, обеспечивающие соединение вала двигателя с валом генератора, должны обладать высокой демпфирующей способностью, быть разборными и упругими с неметаллическими элементами для связи полумуфт (с резиновой звездочкой, с промежуточным диском, торообразной оболочкой).

Основные технические характеристики

Основными, общими техническими характеристиками, определяющими параметры работы и возможность использования дизельных электрических станций, являются:

  • Электрическая мощность, выдаваемая генератором, измеряется в кВт;
  • Частота вращения вала, измеряется в оборотах в минуту;
  • Электрический коэффициент мощности (cos φ);
  • Количество фаз, вырабатываемого электрического тока;
  • Напряжение, вырабатываемого тока (220/380 В);
  • Частота вырабатываемого тока (50 Гц);
  • Расход топлива за час работы;
  • Объем топливного бака;
  • Масса;
  • Габаритные размеры.

Кроме общих технических характеристик, в паспорте электростанции приводятся технические характеристики дизельного двигателя и электрического генератора, которыми являются, для:

  • Двигателя:
  • Модель двигателя;
  • Предприятие изготовитель;
  • Количество цилиндров и их расположение;
  • Диаметр цилиндра, измеряется в мм;
  • Ход поршня, измеряется в мм;
  • Вид системы охлаждения;
  • Номинальная частота вращения вала двигателя;
  • Номинальная мощность при номинальном количестве оборотов двигателя;
  • Удельный расход топлива, измеряется в г/кВт*час;
  • Масса двигателя.
  • Генератора:
  • Модель генератора;
  • Предприятие изготовитель;
  • Номинальное напряжение на выходных клеммах генератора;
  • КПД при полной нагрузке;
  • Коэффициент мощности (cos φ);
  • Номинальная частота вращения вала;
  • Полная электрическая мощность, измеряется в кВА;
  • Масса генератора.

Техническое обслуживание дизельных электростанций

Для того, чтобы дизельная электростанция, являющаяся сложным техническим устройством, работала продолжительное время и не доставляла хлопот пользователям, необходимо вовремя осуществлять ее техническое обслуживание.

Техническое обслуживание можно классифицировать как:

  • Ежедневные профилактические осмотры – осуществляются перед запуском электростанции в работу.
  • Периодические профилактические осмотры – проводятся в соответствии с индивидуальным графиком, определенным для каждой конкретной модели дизельной электростанции.
  • Технические работы, периодичность которых зависит от наработки моточасов эксплуатации установки и в соответствии с составленным графиком их выполнения.

При ежедневных осмотрах или, при цикличной работе электростанции, при ее запуске, выполняется:

  • Проверка целостности узлов и агрегатов;
  • Проверка уровней масла и охлаждающей жидкости;
  • Проверка давления масла в системе смазки двигателя.

При периодических осмотрах выполняется:

  • Проверка и устранение неисправностей узлов и систем, обеспечивающих работу дизельного двигателя. При необходимости выполняется их регулировка.
  • Тестирование работы электрического генератора, при необходимости – регулировка.
  • Проверка сопротивления изоляции электрических проводов и прочих элементов электрических цепей.
  • Проверка работоспособности электрических устройств системы защиты, автоматики и запуска в работу силовых агрегатов.

При выполнении регламентного технического обслуживания выполняются работы, определенные производителем установки, в каждый конкретный вид обслуживания (ТО1, ТО2 и т.д.).

Обслуживание производится на основании графиков его выполнения и в соответствии с перечнем работ, подлежащих выполнению.

Каждому ТО электростанции соответствует определенное количество отработанных ею часов.

При цикличном режиме работы дизельных электрических станций, необходимо осуществлять периодическое тестирование их работы, которое должно выполняться не реже одного раза в месяц.

Особенности современного дизельного двигателя

Важнейший узел дизель-генератора — это двигатель внутреннего сгорания, работающий на дизельном топливе. Воспламенение горючего в указанном типе двигателя происходит от сжатия топлива. Современный рынок богат как двигателями, работающими в четырёхтактном режиме (впуск топлива, его сжатие, рабочий ход и выпуск), так и в двухтактном (сжатие топлива и рабочий ход).

В среднем, работа дизельных двигателей требует меньшей скорости оборотов, так как топливо более долго прогорает, сама конструкция более массивна, поэтому не получила широкого распространения в автомобильной промышленности. При этом, использование дизельного двигателя в составе ДГУ позволяет сэкономить финансы на покупке более доступного по цене и экономичного топлива.

Дизельные двигатели различаются в зависимости от сферы их применения. Например, для использования на автономных электростанциях выбирают мощные генераторы, снабжённые жидкостной системой охлаждения. Переносные ДГУ снабжены воздушным вариантом охлаждения, в некоторых случаях устанавливается промежуточная конструкция для понижения температуры воздуха. Массивность деталей дизельного двигателя нивелируется экономичностью и надёжностью использования топлива, а также большой износостойкостью подобного оборудования. По этим причинам именно ДГУ — самый выгодный варианты для современных мощных электростанций. Пожаробезопасные и экономичные установки прослужат хозяевам в течение долгого времени.

0 0 голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты