Что такое эквивалентный момент двигателя
Вращающий момент. Вращающий момент: формула. Момент силы: определение
Вращение является типичным видом механического движения, которое часто встречается в природе и технике. Любое вращение возникает в результате воздействия некоторой внешней силы на рассматриваемую систему. Эта сила создает так называемый вращающий момент. Что он собой представляет, от чего зависит, рассматривается в статье.
Крутящий момент редуктора – что это означает?
Существует общепризнанная единица измерения крутящего момента – Ньютоно – метры. То есть, если к выходному валу редуктора присоединить какую-либо штангу длиной один метр, то привод должен сохранять работоспособность при нагрузке на конце этой штанги равной 1 Ньютону. Нетрудно догадаться, что, чем ближе к оси выходного вала прикладывается нагрузка, тем больший крутящий момент может выдержать редуктор. Для простоты расчётов можно перевести силу Ньютона в усилие, создаваемое килограммом. Усилие 1 килограмма равен 9,81 Ньютона.
Давайте рассмотрим на примере цилиндрического двухступенчатого редуктора РМ-650. Возьмём самое распространённое передаточное число – 31,5, обороты на входном валу – 1500 в минуту, режим работы – 100% нагрузка. Конструктивно в этом редукторе заложен максимально допустимый крутящий момент при указанных условиях равный 5116 Н.м. Что это означает? Это говорит о том, что при радиусе, допустим, барабана в 1 метр, одетого на выходной вал, редуктор РМ-650 будет выдерживать нагрузку в 5116 Ньютонов или поднимать груз в 520 кг. Соответственно, если радиус барабана будет 0,5 метра, то нагрузка допускается 10232 Н.м. или 1040 кг. Нетрудно догадаться, что создаваемый в механизме крутящий момент определяется произведением силы на длину рычага.
Теорема Штейнера
От чего зависит момент инерции? От массы, положения оси вращения, формы и размеров тела.
Теорема Гюйгенса-Штейнера – очень важная теорема, которую часто используют при решении задач.
Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы
Теорема Гюйгенса-Штейнера гласит:
Момент инерции тела относительно произвольной оси равняется сумме момента инерции тела относительно оси, проходящей через центр масс параллельно произвольной оси и произведения массы тела на квадрат расстояния между осями.
Для тех, кто не хочет постоянно интегрировать при решении задач на нахождение момента инерции, приведем рисунок с указанием моментов инерции некоторых однородных тел, которые часто встречаются в задачах:
Момент крутящий и вращающий
В зависимости от источника возникновения момент силы может иметь 2 смысловых понятия:
- вращающий момент;
- крутящий момент.
Оба понятия в общем употреблении могут считаться синонимами, поскольку являются, как правило, одной и той же величиной. Но вращающий момент — это величина, связанная с внешним приложением силы, то есть с источником силы, и возникает в точке или узле приложения силы, приводящей механизм в действие. Рассмотрим это на примере простейшей схемы такого механического взаимодействия, как закручивание гайки с помощью ключа. К самому ключу прикладывается сила, которая сообщает системе вращающий момент (момент вращения). И одновременно на закручиваемой гайке, как на ведомом элементе механизма возникает крутящий момент.
Что такое крутящий момент простыми словами на примере более сложного механизма, например, турбокомпрессора автомобиля, можно подробнее почитать на сайте https://centr-turbin.com. Турбокомпрессор используется для повышения кпд и мощности двигателя за счет использования энергии выхлопа автомобиля, которые поступают в турбину, приводя в движение ось турбокомпрессора, обеспечиваюший принудительный приток воздуха в камеру сгорания цилиндра двигателя. На схеме движение выхлопных газов в турбинной части показано красным цветом, а движение воздуха в компрессорной части — синим.
В этом случае вращающий момент придается механизму под действием выхлопных газов в турбинной его части. Одновременно с этим на оси турбокомпрессора возникает крутящий момент, который передает вращение на рабочее колесо компрессора, нагнетающее воздух в цилиндры двигателя.
Крутящий момент в зависимости от вида редуктора
По типу передачи различают основные виды: червячные, цилиндрические, конические, планетарные механизмы. Но не всегда востребованы именно однотипные: широко применяются редукторы комбинированные. В зависимости от конструкции редуктора вращение передаётся между параллельными валами, перекрещивающимися или пересекающимися. От вида редуктора зависит интенсивность крутящего момента. Она более высокая у планетарных редукторов.
Самыми популярными в промышленности на момент написания настоящего обзора являются цилиндрические редукторы. Они передают большие мощности и имеют КПД до целых 95%, то есть крайне полезны для выполнения своих задач.
Червячные редукторы популярные в связи с простотой конструкции, компактностью, плавностью хода и самоторможением. Однако, к сожалению, КПД их снижается из-за больших потерь на трение, тем не менее, в настоящее время и они достаточно востребованы.
Конические редукторы отличаются большей плавностью зацепления, длительное время могут работать в тяжелых условиях. Они часто применяются для передачи больших крутящих моментов под прямым углом. Из всех видов именно цилиндрическая передача – самая долговечная и надёжная.
С целью повышения передаточного числа изделия увеличивается количество ступеней.
Допустимый крутящий момент в разных редукторах создаётся по-разному:
- в цилиндрических редукторах за счёт разности диаметров шестерен, работающих в паре;
- в червячных редукторах за счёт изменения числа зубцов на шестерне.
Расчёт М кр.
Для лучшего понимания стоит изучить ситуацию на конкретном примере.
В качестве примера возьмём двухступенчатый цилиндрический редуктор РМ-650. Условия: на входном валу – обороты 1500 за минуту, передаточное число – 31,5, а нагрузка 100%.
При данной ситуации получится конструктивно максимальный крутящий момент 5116 Н.м.
Скажем, на выходной вал редуктора надет барабан радиусом в 1 метр. Это означает, что редуктор станет держать нагрузку в 5116 Н.м. (груз в 520 кг). При радиусе барабана 0,5 метра разрешена нагрузка 10232 Н.м. (1040 кг). Создаваемый М кр. будет равен перемножению силы на радиус. Рычагом является радиус барабана.
Формула расчёта максимального М кр.
Формула для расчёта допускаемого М кр.:
М = (9550 x P x U x N)/(K x nвх) , где:
- Р — мощность двигателя (кВт);
- U — передаточное число;
- N – КПД. У цилиндрических вариантов — 0,95-0,98, у червячных — 0,94-0,95;
- nвх — обороты входного вала (об/мин);
- К — коэффициент (по ГОСТ 21354-87 в зависимости от режимов использования).
ВАЖНО! Полученный при расчёте крутящий момент ни при каких обстоятельствах не должен быть более того, что отмечается в технических параметрах редуктора.
Дизайн
Я фанат последних моделей Audi. Их внешний вид вызывает у меня бурю ярких эмоций. Тут тоже случилась буря эмоций, но они, к сожалению, не такие положительные.
Спереди всё отлично: такой взгляд нам уже знаком по концепту Audi A6 e-tron. Однако этот взгляд, показанный несколько месяцев назад, теперь возведён в абсолют: фальшрадиаторная решётка всё больше расплывается и теряет границы.
Видимо, скоро спереди Audi останутся лишь диоды. Фары становятся тоньше и, кажется, готовы мимикрировать под кузов.
Перед выглядит очень массивным. И по каким-то причинам сразу видно, что Audi пытается возродить утерянную традицию строительства больших фаэтонов — очень больших, дорогих и элегантных родстеров, которые производились на рубеже 20-х и 30-х годов XX века. На презентации Audi подчеркнула это: вдохновением для Skysphere послужил шикарный Horch 853, выпускавшийся с 1937 по 1940 год.
Skysphere поражает воображение: виден футуристичный взгляд дизайнеров. Хочется смотреть на этот автомобиль. И довольно странно выглядящие 23-дюймовые диски, обутые в шины 285/30, лишь подчёркивают изящество автомобиля.
Подчёркивают до тех пор, пока вы не увидите корму Skysphere:
Такая форма вызывает противоречивые чувства. С некоторых ракурсов она выглядит изящно:
С некоторых пугает:
Одна из ключевых фишек концепта — удлинение. И без того длинный автомобиль с 4,94 метра увеличивается до 5,19 метра. Причём увеличивается в том числе и расстояние между колёсами.
Так выглядит автомобиль в «увеличенном» варианте: крылья выдвигаются вперёд. Источник: Audi
Обе версии подразумевают разные форматы управления автомобилем. «Короткая» доступна при активации драйверского режима. «Длинная» — при включении автопилота четвёртого уровня.
Салон — также сплачение нескольких эпох. И вот тут я понял, что многие элементы Skysphere были вдохновлены ар-деко. По крайней мере, в салоне вы увидите его отличительные черты в лице закономерной геометрии и нарочитого шика и лоска дорогих материалов, используемых в отделке.
Однако всё-таки дизайнерский стиль салона сплачается и с другим направлением. Audi называет его «бесшовной цифровой экосистемой».
При выборе автопилота руль исчезает за приборной панелью. Источник: Audi
Простые механизмы — приспособления, служащие для преобразования силы. К ним относится рычаг, наклонная плоскость, блоки, клин и ворот.
Наклонная плоскость
Дает выигрыш в силе. Чтобы поднять груз на высоту h, нужно приложить силу, равную силе тяжести этого груза. Но, используя наклонную плоскость, можно приложить силу, равную произведению силы тяжести на синус угла уклона плоскости:
Рычаг
Дает выигрыш в силе, равный отношению плеча второй силы к плечу первой:
F 1 F 2 . . = d 2 d 1 . .
Неподвижный блок
Изменяет направление действия силы. Модули и плечи сил при этом равны:
Подвижный блок
Делит силу на две равные части, направление которых зависит от формы клина:
При использовании простых механизмов мы выигрываем в силе, но проигрываем в расстоянии. Поэтому выигрыша в работе простые механизмы не дают.
Алгоритм решения
Решение
Известна лишь масса батона: m1 = 0,8 кг. Но мы также можем выразить плечи для силы тяжести батона и хлеба. Для этого длину линейки примем за один. Так как линейка поделена на 10 секций, можем считать, что длина каждой равна 0,1. Тогда плечи сил тяжести батона и рыба соответственно равны:
Запишем правило моментов:
Сила тяжести равна произведению массы на ускорение свободного падения. Поэтому:
Отсюда масса рыбы равна:
m 2 = m 1 d 1 d 2 . . = 0 , 8 · 0 , 3 0 , 4 . . = 0 , 6 ( к г )
pазбирался: Алиса Никитина | обсудить разбор | оценить
Однородный куб опирается одним ребром на пол, другим на вертикальную стену (см. рисунок). Плечо силы трения F → тр «> F тр относительно оси, проходящей через точку О3 перпендикулярно плоскости чертежа, равно.
Алгоритм решения
- Сформулировать определение плеча силы.
- Найти плечо силы трения и аргументировать ответ.
Решение
Плечом силы трения называют кратчайшее расстояние от оси вращения до линии, вдоль которой действует сила. Чтобы найти такое расстояние, нужно провести из точки равновесия перпендикуляр к линии действия силы трения. Отрезок, заключенный между этой точкой и линией, будет являться плечом силы трения. На рисунке этому отрезку соответствует отрезок О3В.
pазбирался: Алиса Никитина | обсудить разбор | оценить