Aklaypart.ru

Авто Журнал
84 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое двигатель с плоским якорем

Электродвигатели

  • Основные параметры электродвигателя
    • Момент электродвигателя
    • Мощность электродвигателя
    • Коэффициент полезного действия
    • Номинальная частота вращения
    • Момент инерции ротора
    • Номинальное напряжение
    • Электрическая постоянная времени
    • Механическая характеристика
  • Сравнение характеристик электродвигателей
  • Области применения электродвигателей
  • Производители электродвигателей

В некоторых режимах работы электропривода электродвигатель осуществляет обратное преобразование энергии, то есть работает в режиме электрического генератора.

По виду создаваемого механического движения электродвигатели бывают вращающиеся, линейные и др. Под электродвигателем чаще всего подразумевается вращающий электродвигатель, так как он получил наибольшее применение.

Областью науки и техники изучающей электрические машины является — электромеханика. Принято считать, что ее история начинается с 1821 года, когда был создан первый электродвигатель М.Фарадея.

Устройство и описание ДПТ

Конструктивно электродвигатель постоянного тока устроен по принципу взаимодействия магнитных полей.

Самый простой ДПТ состоит из следующих основных узлов:

  1. Двух обмоток с сердечниками, соединенных последовательно. Данная конструкция расположена на валу и образует узел, называемый ротором или якорем.
  2. Двух постоянных магнитов, повёрнутых разными полюсами к обмоткам. Они выполняют задачу неподвижного статора.
  3. Коллектора – двух полукруглых, изолированных пластин, расположенных на валу ДПТ.
  4. Двух неподвижных контактных элементов (щёток), предназначенных для передачи электротока через коллектор до обмоток возбуждения.

Рисунок 1. Схематическое изображение простейшего электродвигателя постоянного тока.

Рассмотренный выше пример – это скорее рабочая модель коллекторного электродвигателя. На практике такие устройства не применяются. Дело в том, что у такого моторчика слишком маленькая мощность. Он работает рывками, особенно при подключении механической нагрузки.

Статор (индуктор)

В моделях мощных современных двигателях постоянного тока используются статоры, они же индукторы, в виде катушек, намотанных на сердечники. При замыкании электрической цепи происходит образование линий магнитного поля, под действием возникающей электромагнитной индукции.

Для запитывания обмоток индуктора ДПТ могут использоваться различные схемы подключения:

  • с независимым возбуждением обмоток;
  • соединение параллельно обмоткам якоря;
  • варианты с последовательным возбуждением катушек ротора и статора;
  • смешанное подсоединение.

Схемы подключения наглядно видно на рисунке 2.

Рисунок 2. Схемы подключения обмоток статора ДПТ

У каждого способа есть свои преимущества и недостатки. Часто способ подключения диктуется условиями, в которых предстоит эксплуатация электродвигателя постоянного тока. В частности, если требуется уменьшить искрения коллектора, то применяют параллельное соединение. Для увеличения крутящего момента лучше использовать схемы с последовательным подключением обмоток. Наличие высоких пусковых токов создаёт повышенную электрическую мощность в момент запуска мотора. Данный способ подходит для двигателя постоянного тока, интенсивно работающего в кратковременном режиме, например для стартера. В таком режиме работы детали электродвигателя не успевают перегреться, поэтому износ их незначителен.

Ротор (якорь)

В рассмотренном выше примере примитивного электромотора ротор состоит из двухзубцового якоря на одной обмотке, с чётко выраженными полюсами. Конструкция обеспечивает вращение вала электромотора.

В описанном устройстве есть существенный недостаток: при остановке вращения якоря, его обмотки занимают устойчивое. Для повторного запуска электродвигателя требуется сообщить валу некий крутящий момент.

Этого серьёзного недостатка лишён якорь с тремя и большим количеством обмоток. На рисунке 3 показано изображение трёхобмоточного ротора, а на рис. 4 – якорь с большим количеством обмоток.

Рисунок 3. Ротор с тремя обмотками Рисунок 4. Якорь со многими обмотками

Подобные роторы довольно часто встречаются в небольших маломощных электродвигателях.

Для построения мощных тяговых электродвигателей и с целью повышения стабильности частоты вращения используют якоря с большим количеством обмоток. Схема такого двигателя показана на рисунке 5.

Рисунок 5. Схема электромотора с многообмоточным якорем

Коллектор

Если на выводы обмоток ротора подключить источник постоянного тока, якорь сделает пол-оборота и остановится. Для продолжения процесса вращения необходимо поменять полярность подводимого тока. Устройство, выполняющее функции переключения тока с целью изменения полярности на выводах обмоток, называется коллектором.

Самый простой коллектор состоит из двух, изолированных полукруглых пластин. Каждая из них в определённый момент контактирует со щёткой, с которой снимается напряжение. Одна ламель всегда подсоединена к плюсу, а вторая – к минусу. При повороте вала на 180º пластины коллектора меняются местами, вследствие чего происходит новая коммутация со сменой полярности.

Такой же принцип коммутации питания обмоток используются во всех коллекторах, в т. ч. и в устройствах с большим количеством ламелей (по паре на каждую обмотку). Таким образом, коллектор обеспечивает коммутацию, необходимую для непрерывного вращения ротора.

В современных конструкциях коллектора ламели расположены по кругу таким образом, что каждая пластина соответствующей пары находится на диаметрально противоположной стороне. Цепь якоря коммутируется в результате изменения положения вала.

Асинхронный двигатель — общий взгляд

Статистику наиболее широко используемых электрических моторов возглавляет именно трехфазный асинхронный двигатель.

Читать еще:  Чип тюнинг двигателя митсубиси лансер

Асинхронные моторы богатым ассортиментом присутствуют на рынке. Но какая из машин выглядит лучшей в техническом плане или применительно к условиям использования?

Практически 80% механических мощностей, используемых всеми отраслями экономики, обеспечиваются трехфазными асинхронными двигателями.

Деловая ставка на этот вид электрических машин обусловлена:

  • простой надёжной конструкцией,
  • низкой стоимостью,
  • хорошими рабочими характеристиками,
  • отсутствием сложных схем коммутации,
  • возможностями регулирования скорости.

Асинхронным называют двигатель по причине очевидной. Вращательный момент такой конструкции не даёт стабильной синхронности движения.

Мощность трехфазного асинхронного двигателя транспортируется от статора к ротору посредством индуктивной связи.

Конструктивный расклад: 1 — крышка корпуса передняя; 2 — стержень вала; 3 — арматура; 4 — лопасти захвата воздуха для охлаждения; 5 — сердечник; 6 — рама; 7 — клеммная коробка; 8 — крышка корпуса задняя

Электрическая машина наделена двумя основными деталями конструкции:

  1. Статор.
  2. Ротор.

Статор — стационарная часть конструкции с обмотками медным проводом, на которые подается трехфазный электрический ток.

Ротор — подвижная деталь конструкции (создаёт момент вращения). Передаёт механическое усилие нагрузке через стальной вал. Ротор трехфазного асинхронного двигателя классифицируется двумя видами:

  1. Короткозамкнутый.
  2. Фазный (фазовращающий, токосъёмный, раневой).

Соответственно, в зависимости от вида конструкции детали, трехфазный асинхронный двигатель классифицируется как:

  1. Мотор короткозамкнутого действия.
  2. Мотор фазного действия.

Конструкция статора для обоих видов двигателей, при этом, остаётся неизменной.

Набор основных деталей классической конструкции, которая встречается повсеместно. В зависимости от мощности могут изменяться лишь габаритные размеры компонентов

Другими частями — составляющими конструкции, являются: стальной вал, подшипники, крыльчатка охлаждения, клеммная коробка.

Особенности конструкции статора

Конструкция статора трехфазного асинхронного двигателя содержит трех базовых компонента:

  1. Раму.
  2. Сердечник.
  3. Обмотки возбуждения.

Статор выступает частью корпуса трехфазного асинхронного двигателя. Его основная функция — крепление сердечника статора и проводную намотку.

Внешняя область статора выполняет функцию покрытия, обеспечивает защиту и механическую прочность внутренним частям асинхронного двигателя.

Рама статора изготовлена из литой или свариваемой стали. Каркас трехфазного асинхронного двигателя нуждается в прочности и жесткости. Длина воздушного зазора между рамой и ротором очень мала.

Если не обеспечить прочность и жёсткость конструкции, нарушается концентрическое положение ротора. Такое состояние приведет к разбросу баланса магнитного натяжения.

Основная функция сердечника статора — перенос переменного магнитного потока. С целью уменьшения потерь вихревых токов, сердечник статора ламинируется. Создаются наслоённые тиснения толщиной около 0,4-0,5 мм.

Статорный сердечник — по сути, набор из многочисленных металлических пластин, плотно спрессованных друг с другом. Для намотки медного провода оставлены слоты

Все тиснения спрессованы в единое целое, образуя сердечник статора, жёстко скрепленный рамой. Штамповка обычно содержит элементы кремниевой стали, что способствует уменьшению гистерезисных потерь при работе двигателя.

Виды асинхронных моторов

Асинхронный двигатель с короткозамкнутым ротором претендует на лидерство среди всех видов моторов переменного тока. Это оборудование часто используется для нужд промышленности.

Практика применения показала главные свойства этого вида электродвигателей:

  • низкая рыночная стоимость,
  • надежность эксплуатации,
  • эффективность работы,
  • низкие требования в обслуживании.

Другой вид оборудования – асинхронный двигатель с токосъёмными кольцами (с фазным якорем), отличается куда меньшей потребностью применения в промышленности.

Мотор с токосъёмником: 1 — статорный сердечник; 2 — корпус (рама); 3 — кронштейн; 4 — вал; 5 — подшипник; 6 — якорь; 7 — группа щёток; 8 — устройство коммутации

Не более 5% — 10% моторов с токосъёмными кольцами используются в индустрии.

Объясняется этот момент следующими конструктивными недостатками асинхронных моторов с фазным вращением:

  • потребность частого обслуживания,
  • значительный расход меди,
  • сложность конструкции для ремонта.

Различия между видами асинхронных моторов

Одним из ярко выраженных различий между фазными и короткозамкнутыми двигателями видится фактор управления.

Электродвигатель, наделённый фазным токосъёмником, допускает включение в цепь внешнюю нагрузку (сопротивление) для управления скоростью двигателя.

В свою очередь схема двигателя с короткозамкнутым ротором не предполагает добавления любой внешней цепи, т.к. пазы ротора прорезаны вплоть до его торцевых граней.

Таким выглядит один из конструктивных вариантов токосъёмника на три фазы. Здесь следует отметить конструкционную особенность — несколько скошенное расположение слотов

Конструкция ротора фазовращающего типа представлена в виде ламинированного сердечника, наделённого слотами, расположенными параллельно один другому.

Каждый слот содержит по одному стержню и несёт трёхфазную изолированную обмотку. Причём число витков на стержнях равно числу витков обмоток статора.

Три концевых вывода обмотки подключаются, образуя нейтраль «звезды», а начальные выводы соединены с тремя медными кольцами, размещёнными на валу. С кольцами контактируют токосъёмные щётки.

Короткозамкнутый ротор изготовлен несколько иначе. Слоты на сердечнике не располагаются параллельно. Эти элементы ротора скошены под некоторым углом.

Читать еще:  Nissan note обороты двигателя

Элементы КЗР: 1 — алюминиевое кольцо; 2, 7 — вал стальной; 3, 6 — лопасти алюминиевые; 4 — алюминиевые стержни; 5 — ламинированный стальной сердечник

Сердечник сделан многослойным, с прорезями по всей длине окружности, замкнутыми на торцах сердечника медным или алюминиевым кольцом.

Конфигурация скошенных слотов короткозамкнутого ротора имеет свои преимущества:

  • снижаются шумы электродвигателя при работе,
  • обеспечивается плавный крутящий момент,
  • уменьшается магнитная блокировка статора по отношению к ротору,
  • увеличивается сопротивление ротора за счёт длинных проводников стержней.

Особенности для применения на практике

Изучая возможности применения тех или иных конструкций на практике, следует отметить более высокую эффективность моторов с короткозамкнутым ротором.

Относительно эффективности, что показывают асинхронные электромоторы с токосъёмными кольцами, короткозамкнутые выглядят явно лучше. Коэффициент мощности у фазных моторов также существенно ниже.

Однако преимущественной стороной фазных конструкций является возможность регулировать скорость вращения, тогда как короткозамкнутые модификации таких возможностей не дают.

Но регулировка скорости вращения асинхронного двигателя с короткозамкнутым ротором возможна при помощи частотного преобразователя.

Ещё одно преимущество асинхронного электродвигателя с фазным ротором – низкий пусковой ток. Для двигателей с короткозамкнутым ротором этот параметр существенно выше.

Поэтому электродвигатели с фазным ротором, как правило, используются на агрегатном оборудовании, где важен высокий пусковой момент:

  • подъёмники промышленные,
  • лифты гражданские,
  • краны строительные,
  • лебёдки производственные и т.п.

Тогда как другой вид моторов (короткозамкнутых) применяется часто в качестве приводов сверлильных, токарных станков и другой техники, где отсутствует потребность высокого пускового момента.

Учебное видео пособие по двигателям разного вида

Принцип преобразования энергии

Принцип работы электродвигателя любого типа заключается в использовании электромагнитной индукции, возникающей внутри устройства после подключения в сеть. Для того чтобы понять, как эта индукция создается и приводит элементы двигателя в движение, следует обратиться к школьному курсу физики, объясняющему поведение проводников в электромагнитном поле.

Итак, если мы погрузим проводник в виде обмотки, по которому движутся электрические заряды, в магнитное поле, он начнет вращаться вокруг своей оси. Это связано с тем, что заряды находятся под влиянием механической силы, изменяющей их положение на перпендикулярной магнитным силовым линиям плоскости. Можно сказать, что эта же сила действует на весь проводник.

Схема, представленная ниже, показывает токопроводящую рамку, находящуюся под напряжением, и два магнитных полюса, придающие ей вращательное движение.

Именно эта закономерность взаимодействия магнитного поля и токопроводящего контура с созданием электродвижущей силы лежит в основе функционирования электродвигателей всех типов. Для создания аналогичных условий в конструкцию устройства включают:

  • Ротор (обмотка) – подвижная часть машины, закрепленная на сердечнике и подшипниках вращения. Она исполняет роль токопроводящего вращательного контура.
  • Статор – неподвижный элемент, создающий магнитное поле, воздействующее на электрические заряды ротора.
  • Корпус статора. Оснащен посадочными гнездами с обоймами для подшипников ротора. Ротор размещается внутри статора.

Для представления конструкции электродвигателя можно создать принципиальную схему на основе предыдущей иллюстрации:

После включения данного устройства в сеть, по обмоткам ротора начинает идти ток, который под воздействием магнитного поля, возникающего на статоре, придает ротору вращение, передаваемое на крутящийся вал. Скорость вращения, мощность и другие рабочие показатели зависят от конструкции конкретного двигателя и параметров электрической сети.

Двигатели с печатной обработкой якоря

Двигатели с печатной обработкой якоря (рисунок 2), также обладают малой инерцией. Якорь этого двигателя имеет вид тонкого диска из немагнитного материала (текстолит, стеклотекстолит и так далее), на обеих сторонах которого расположены медные проводники обмотки якоря. Проводники выполняются путем гальванического травления листов медной фольги, наклеенных на диск якоря, либо гальваническим осаждением или переносом меди. Обмотка, изготовляемая таким способом, получила название печатной. Схема обмотки якоря обычная, двухслойная, причем проводники отдельных слоев расположены на разных сторонах диска и соединяются электрически между собой через отверстия в диске. Серебряно-графитные щетки скользят по неизолированной поверхности элементов обмотки якоря, как по коллектору.

Рисунок 2. Двигатель постоянного тока с печатной обмоткой якоря: а – разрез двигателя; б – обмотка якоря
1 – диск якоря с обмоткой; 2 – вал; 3 – втулка; 4 – щетки и щеткодержатель; 5 – постоянные магниты (полюсы); 6 – полюсные наконечники; 7 и 8 — диски из магнитной стали

Возбуждение осуществляется с помощью постоянных магнитов или обмотки возбуждения. Напряжение таких машин составляет 6 – 50 В. Ввиду хороших условий охлаждения допустимы большие плотности тока в обмотке якоря (до 30 – 40 А/мм² при продолжительном режиме работы). В случае необходимости быстрого торможения после снятия напряжения сигнала диск якоря изготовляется из алюминия.

Читать еще:  Что урчит в двигателе калины

Что такое статор ЭД и его назначение?

Статор – это неподвижная часть двигателя, которая работает в паре с ротором. Статор состоит из основания и сердечника. Основание это цельный корпус, изготовленный из сплавов алюминия или чугуна. Сердечник изготовлен листовой электротехнической стали, толщина которой зависит от характеристик двигателя и оставляет от 0,35 до 0,5 мм. В статоре есть пазы, предназначенные для размещения обмотки. Обмотка – это свитые межу собой повода, соединенные параллельным способом, что позволяет при работе уменьшить возникающие вихревые токи. Трехфазная перемотка статора создает электромагнитное поле. В пазы устанавливают определенное количество катушек, которые соединятся между собой.

В случае поломки электродвигателя выполняется перемотка статора. Варианты перемоток зависят от типа изоляции. Изоляцию выбирают в зависимости от показателя максимального напряжения, температуры перемотки, типа паза и вида обмотки.

Используемый материал для обмотки – медная проволока. Перемотка осуществляется в один или два слоя, в зависимости от расположения катушек в пазах.

Ремонт ЭД начинается с очистки или продувки от грязи и пыли составных частей статора. Следующий шаг – разборка корпуса для замены обмотки. При помощи механических инструментов проводят срезку лицевой части статора, где находится перемотка.

Для того чтобы осуществить разборку статор необходимо нагреть до температуры 200 градусов, после чего снятие обмотки и катушек будет более простым. После того как статор разобран прочищаются пазы. В очищенные и подготовленные пазы устанавливают новую обмотку, используя готовые шаблоны. Установленные новые катушки необходимо покрыть лакоми и высушить при температуре 150 градусов, выдержав два часа.

Сопротивлением между корпусом и обмоткой проверять можно только после того, как была выдержана все технология сушки. Использование различного по диаметру кабеля позволяет проводить регулировку параметров работы ЭД.

Во время эксплуатации электродвигателя возможны ситуации, когда детали начинают перегреваться. Это связано с изменением потребляемого тока. Это происходит из-ща размыкания электрической цепи. Еще одна причина нагрева ЭД – износ подшипников. Это негативно сказывается работоспособности обмотки изоляции. Производители устанавливают на всех типах ЭД защиту от перегрева. Она следит и срабатывает в случаях:

  • превышения пускового времени;
  • перегрузка;
  • скачков напряжения;
  • выхода из строя фазных проводов;
  • заклинивания ротора;
  • сбоя приводных устройств.

Также для защиты статора применяется тепловое реле. Оно срабатывает, когда нагревается биметаллическая пластина, которая под воздействием пружины размыкает электрическую цепь. В исходное положение пластина возвращается при нажатии кнопки.

Реле, может встроенным в ЭД, а может быть приобретено как отдельная единица.

Возможные поломки и способы их ремонта

В результате работы коллекторного двигателя могут возникнуть неисправности. Большинство из них самостоятельно сможет устранить человек не имеющий специализированных технических знаний и оборудования. Ниже представлены наиболее часто возникающие неисправности.

Повышенный шум при работе узла. Сильный уровень шума при работе мотора может свидетельствовать о выходе из строя подшипников, на которые установлен якорь.

При выходе из строя подшипников качения необходимо заменить изношенные детали новыми.

Износ щёток. Критическая изношенность щёток сопровождается повышенным уровнем шума при работе. Несвоевременная замена может привести к поломке коллектора. При возникновении неисправности необходимо заменить графитовые щётки. При выборе щёток необходимо обратить внимание на их толщину. Новые детали не должны застревать в держателях.

Отсутствие вращения якоря при подключении мотора к сети питания. Отсутствие вращения может возникнуть в результате обрыва цепи питания. Обрыв может произойти в результате поломки пружины прижимающей щётку к коллектору или при обрыве провода. При поломке пружины необходимо заменить ее новой деталью. При обрыве провода необходимо восстановить его целостность.

Отсутствие вращения ротора может возникнуть в результате выхода из строя предохранителя. Для восстановления работоспособности необходимо установить новый предохранитель. Перед установкой предохранителя необходимо определить причину, по которой старое устройство вышло из строя. После устранения причины можно установить предохранитель и провести испытание двигателя.

Отсутствие регулировки вращения вала якоря. После запуска агрегат работает на максимальных оборотах. Такая неисправность возникает в результате поломки реостата. Для восстановления работоспособности двигателя необходимо заменить регулятор.

Медленное вращение ротора. Снижение частоты вращения вала может возникнуть в результате низкого напряжения в сети питания. Необходимо проверить напряжение. Снижение оборотов якоря может быть спровоцировано высокой нагрузкой. Необходимо снизить нагрузку на якорь.

Из вышеперечисленного следует, что коллекторный мотор преобразовывает электрическую энергию в физическую силу. Для передачи напряжения к обмоткам якоря используются щётки. Моторы отличаются простотой конструкции и небольшими габаритно массовыми параметрами.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector