Aklaypart.ru

Авто Журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое асинхронный двигатель переменного тока

Асинхронный электродвигатель: устройство, принцип работы, виды

Одним из наиболее распространенных типов электрических машин в мире является асинхронный электродвигатель. За счет высокой надежности и неприхотливости в работе такие агрегаты получили широкое распространение в самых различных отраслях промышленности и сельского хозяйства, они помогают решать бытовые и общепроизводственные задачи любой сложности. Поэтому в данной статье мы детально рассмотрим особенности асинхронных двигателей.

Устройство

Асинхронные электродвигатели состоят из:

  • Ротора.
  • Статора.

Статор, состоит из основных частей:

  • Корпус . Служит для образования соединений деталей мотора. При малом размере мотора корпус цельнолитой. Материал изготовления – чугун. Могут использоваться сплавы алюминия, либо сталь. Часто в небольших двигателях функцию сердечника выполняет корпус. В больших моторах со значительной мощностью корпус имеет сварную конструкцию.
  • Сердечник . Эта деталь запрессована в корпус, и предназначена для повышения магнитной индукции, изготовлена из электротехнической стали в виде пластин. Для уменьшения потерь, возникающих при вихревых токах, сердечник покрывается лаком.
  • Обмотка . Она расположена в пазах сердечника. Для ее намотки применяется медная проволока, секциями, соединенными между собой по определенной схеме. Витки образуют 3 катушки, которые по сути дела играют роль обмотки статора. Эта обмотка первичная, непосредственно к ней подключается питание.
Ротор:
  • Ротор – элемент двигателя, находящийся во вращении, предназначен для трансформации магнитного поля в энергию движения, состоит из частей:
  • Вал . Подшипники вала находятся на его хвостовиках. При сборке двигателя подшипники запрессовываются, фиксируются болтами к крышкам корпуса.
  • Сердечник . Его сборку производят на валу двигателя. Он состоит из металлических пластин электротехнической стали, которая обладает свойством малого сопротивления магнитному полю. Форма сердечника в виде цилиндра используется для укладки катушки якоря, которая называется вторичной. Она получает энергию от магнитного поля, появляющегося вокруг обмоток статора при подаче питания.
Классификация по типу ротора
  • С короткозамкнутым ротором.


Такой тип двигателя оснащен обмоткой в виде алюминиевых стержней, расположенных в пазах сердечника. На торце ротора они замыкаются между собой кольцами.

  • С ротором, оснащенным контактными кольцами.


Оба типа моторов имеют схожую конструкцию статора. Разница состоит лишь в конструкции якоря.

Классификация по числу фаз

Асинхронные электродвигатели трехфазные являются основными типами моторов. Они оснащены 3-мя обмотками на статоре, смещены на 120 градусов, соединены между собой треугольником, либо звездой, получают питание от трех фаз переменного тока.

Асинхронные электродвигатели небольшой мощности чаще всего изготавливаются двухфазными . Они отличаются от 3-фазных моторов оснащением 2-мя обмотками на статоре, которые смещены между собой на угол 90 градусов.

В случае равенства токов по модулю, и их сдвигу по фазе на 90 градусов, действие мотора не будет иметь отличия от 3-фазного двигателя. Но такие типы двигателей чаще подключаются от однофазной сети, а искусственный сдвиг на 90 градусов образуется за счет конденсаторов.

Асинхронные электродвигатели однофазные оснащаются единственной обмоткой на статоре. Они практически не могут работать. Когда вал электродвигателя неподвижен, то при подаче питания образуется только импульсное магнитное поле, а момент вращения равен нулю. Но если ротор у такого электродвигателя принудительно раскрутить, то он сможет функционировать и приводить в действие какой-либо привод механизма.

В таком случае пульсирующее поле складывается из 2-х симметричных полей: прямого и обратного. Они образуют разные моменты: один двигательный, другой тормозной. Но двигательный момент получается больше тормозного, возникающего вследствие токов ротора высокой частоты.

В связи с этим 1-фазные моторы оснащаются второй обмоткой, применяющейся в качестве пусковой. В ее цепи для сдвига фаз подключают конденсаторы. Их емкость имеет значительную величину, и может достигать нескольких десятков мкФ при маломощном моторе, меньше 1000 ватт.

В управляющих системах применяют 2-фазные асинхронные электродвигатели, получившие название исполнительных. Они оснащены двумя обмотками статора, которые имеют сдвиг фаз на 90 градусов. Одна обмотка (возбуждения) питается от сети 50 герц, а вторая применяется в качестве управляющей.

Читать еще:  Двигатель 11193 на что ставят

Чтобы образовалось магнитное поле с вращающим моментом, ток в управляющей обмотке должен иметь сдвиг 90 градусов. Для регулировки скорости мотора изменяют значение тока в этой обмотке, либо меняют угол фазы. Реверсивное движение обеспечивается сменой фазы в обмотке управления на 180 градусов, с помощью переключения обмотки.

2-фазные асинхронные электродвигатели производятся в разных исполнениях:
  • Короткозамкнутым ротором.
  • Полым магнитным ротором.
  • Полым немагнитным ротором.
Линейные моторы

Чтобы преобразовать движение вращения в поступательное движение, необходимо применение определенных механизмов. Поэтому при необходимости двигатель конструктивно выполняют таким образом, что его ротор сделан в виде бегунка с линейными движениями.

В таком случае двигатель получается развернутым. Обмотка статора такого мотора сделана, как и у обычного двигателя, но она должна быть уложена на всей длине перемещения бегунка (ротора) в пазы. Такой ротор в виде бегунка чаще бывает короткозамкнутым. К нему присоединен привод механизма. На краях статора располагают ограничители, которые не дают ротору выходить за определенные пределы.

Принцип действия

Якорь электродвигателя приводится в действие с помощью эффекта магнитного поля, возникающего в катушках статора. Для лучшего понимания принципа работы мотора, нужно освежить в памяти закон самоиндукции. Он говорит, что вокруг подключенного к питанию проводника образуется магнитное поле. Его величина прямо зависит от индуктивности проводника и потока частиц.

Также, магнитное поле образует силу, направленную в определенную сторону, которая вращает ротор мотора. Чтобы двигатель работал с достаточной эффективностью, нужно получить значительный магнитный поток. Его можно создать особой установкой первичной обмотки.

Источник напряжения выдает переменное напряжение, значит, вокруг статора магнитное поле будет с такими же свойствами, и прямо зависит от изменения тока сети. Фазы смещены между собой на 120 градусов.

Процессы в обмотке статора

Все фазы сети подключаются к катушкам статора, каждая фаза к определенной катушке. Поэтому магнитное поле будет иметь смещение на 120 градусов. Питание поступает в виде переменного напряжения, значит, вокруг катушек возникнет переменное магнитное поле.

Схема двигателя выполняется так, чтобы магнитное поле вокруг катушек постепенно менялось и переходило от одной катушки к другой. Так образуется магнитное поле с эффектом вращения. Можно определить частоту вращения, которая будет измеряться в числе оборотов вала мотора. Она вычисляется по формуле:

n = 60*f / p, где f – частота тока в сети, р – количество пар полюсов статора.

Работа ротора

Процессы во вторичной обмотке ротора, и особенность конструкции, которую имеют асинхронные электродвигатели с короткозамкнутым ротором.

К обмотке якоря напряжение не подается. Оно возникает из-за индукционной связи с первичной обмоткой. Из-за этого и происходит действие, обратное действию в статоре. Оно соответствует закону: при пересечении проводника магнитным потоком, в нем образуется электрический ток. Магнитное поле возникает вокруг первичной обмотки от того, что к ней подключается трехфазное питание.

Совместная работа ротора и статора

Мы имеем асинхронный мотор с ротором, в котором протекает электрический ток по его обмотке. Этот ток станет причиной появления магнитного поля возле обмотки якоря. Но полярность потока не будет совпадать с потоком статора. А значит, и сила, которая создается им, будет противодействовать силе магнитного поля первичной обмотки, что заставит двигаться ротор, потому что на нем выполнена вторичная обмотка, а вал закреплен на подшипниках в корпусе мотора.

Разберемся в ситуации, когда взаимодействуют силы магнитных полей ротора и статора, по истечении времени. Известно, что магнитное поле первичной катушки вращается с определенной частотой. Образованная им сила будет передвигаться с такой же скоростью. Это приводит в действие асинхронный двигатель, его ротор будет вращаться вокруг своей оси.

Подключение двигателя к питанию

Для запуска электродвигателя его нужно подключить к напряжению 3-фазного тока. Выполнить такое подключение возможно двумя методами: звездой и треугольником.

Схема звездой

Здесь изображен способ соединения треугольником.

Схемы собираются в клеммной коробке, расположенной на корпусе двигателя.

Читать еще:  Воздушный запуск двигателя самолета

Чтобы запустить электродвигатель в обратном направлении вращения, необходимо только изменить местами две любые фазы путем перебрасывания двух проводов в коробке двигателя.

КОЛЛЕКТОРНЫЙ ДВИГАТЕЛЬ ПЕРЕМЕННОГО ТОКА

Конструкция коллекторных электродвигателей содержит в своем составе следующие обязательные компоненты:

  • ротор особой конструкции;
  • статор с основными и возбуждающими обмотками;
  • коллекторный узел с комплектом щеток.

Основа ротора (якоря) – магнитопровод из пластин электротехнической стали, между полюсами которого при изготовлении по определенной схеме укладываются витки медного провода.

Концы обмоток выводятся на коллекторный узел, являющийся коммутаторной частью системы (здесь осуществляется их переключение). С его помощью обмотка якоря соединяется со статорной в последовательную цепочку. При этом создаваемое в ней поле взаимодействуют с магнитным потоком статора, создавая необходимый вращающий момент.

Преимущества и недостатки.

К достоинствам коллекторных двигателей переменного тока относят плавность запуска и простоту схемы возбуждающей цепочки, включенной последовательно с основной обмоткой. Отмечается также возможность получения значительных по величине вращательных моментов. Эти изделия надежны в работе и хорошо «держат» предельные нагрузки на валу.

Недостатки этих агрегатов представлены ниже:

  • повышенный уровень шумности;
  • низкий по сравнению с бесколлекторными конструкциями кпд;
  • необходимость постоянного обслуживания коллекторного узла из-за износа и загрязнения его элементов (ламелей);
  • потребность в обновлении и регулировки щеток;
  • высокий уровень радиопомех.

К минусам коллекторных электродвигателей также относят недостаточную надежность рабочих узлов и малые сроки эксплуатации входящих в их состав элементов.

Области применения.

Область применения коллекторных двигателей определяется особенностью их конструкции.

При частоте сетевого напряжения 50 Гц скорость вращения вала у этих изделий достигает 9000-10000 об/мин. Именно поэтому двигатели с коллекторным узлом типа широко применяются в бытовой аппаратуре самого различного класса.

Это:

  • стиральные машины;
  • электромясорубки, кофемолки и миксеры;
  • электроинструмент (дрели, болгарки, перфораторы и т. п.).

Сегодня традиционные коллекторные двигатели везде, где это возможно, заменяются современными бесщеточными агрегатами.

С расширением и удешевлением современной электронной базы их производство становится более выгодным. Одновременно совершенствуются схемы управления, работающие на полупроводниковых элементах различного класса.

§ 7.3. Синхронная скорость вращения и скольжения

При включении асинхронного двигателя в сеть по обмоткам статора начинает протекать ток, создающий вращающийся магнитный поток. Скорость вращения этого потока % определяется формулой, приведенной в § 7.1, и называется синхронной. Вслед за вращающимся магнитным потоком начинает вращаться ротор со скоростью n2 Rx. Как видно из рисунка, искусственные характеристики изменяют характер зависимости п = f (М): при увеличении момента М скорость вращения п значительно уменьшается и тем скорее, чем больше дополнительное сопротивление, вводимое в цепь ротора. Такого рода характеристики называются мягкими. Итак, у асинхронного электродвигателя с фазным ротором есть жесткая естественная механическая характеристика и мягкие искусственные механические характеристики, получаемые при введении в цепь ротора дополнительных сопротивлений: при одном и том же значении М скольжение s, а следовательно, и скорость вращения п могут быть различными. Это свойство двигателя используется в качестве одного из способов регулирования числа оборотов асинхронных двигателей (см. следующий параграф).

Какой двигатель лучше выбрать?

Асинхронный или коллекторный? Синхронный или асинхронный? Сказать однозначно, что определенный тип двигателя лучше, точно нельзя. В пользу асинхронных моделей говорят их следующие преимущества.

  • Относительно небольшая стоимость
  • Низкие эксплуатационные затраты
  • Отсутствие необходимости в преобразователях при включении в сеть (только для нагрузок, не нуждающихся в регулировании скорости)
  • Отсутствие потребности в дополнительном источнике питания – в отличие от синхронных аналогов

Тем не менее, у асинхроников есть недостатки. А именно:

  • Малый пусковой момент
  • Высокий пусковой ток
  • Отсутствие возможности регулировки скорости при подключении к сети
  • Ограничение максимальной скорости частотой сети
  • Высокая зависимость электромагнитного момента от напряжения питающей сети
  • Низкий мощностной коэффициент – в отличие от синхронных агрегатов

Тем не менее, все перечисленные недостатки можно устранить, если питать асинхронный двигатель от статического частотного преобразователя. Кроме того, если соблюдать правила эксплуатации и не перегружать агрегаты, то они исправно прослужат длительный срок.

Читать еще:  Двигатели для тюнинга скутеров

Но даже несмотря на то, что синхронные машины обладают довольно конкурентными преимуществами, большинство двигателей сегодня – именно асинхронные. Промышленность, сельское хозяйство, ЖКХ и многие другие отрасли используют именно их за счет высокого КПД. Но коэффициент полезного действия может значительно снижаться за счет таких параметров, как:

  • Высокий пусковой ток
  • Слабый пусковой момент
  • Рассинхрон между механическим моментом на валу привода и механической нагрузкой (это провоцирует высокий рост силы тока и избыточные нагрузки при запуске, а также снижение КПД при пониженной нагрузке)
  • Невозможность точной регулировки скорости работы прибора

Другими факторами, от которых зависит КПД асинхронного электродвигателя, являются:

  • степень загрузки двигателя по отношению к номинальной
  • конструкция и модель
  • степень износа
  • отклонение напряжения в сети от номинального.

Как избежать снижения КПД?

  • Обеспечение стабильного уровня загрузки – не ниже 75%
  • Увеличение мощностного коэффициента
  • Регулировать напряжение и частоту подаваемого тока

Для этого используются:

  • Частотные преобразователи – они плавно изменяют скорость вращения двигателя путем изменения частоты питающего напряжения
  • Устройства плавного пуска – они ограничивают скорость нарастания пускового тока и его предельное значение, как одни из факторов, из-за которых падает КПД

Итак, асинхронный двигатель имеет довольно широкую область использования и применяется во многих хозяйственных и производственных сферах деятельности. У нас, в компании РУСЭЛТ, представлен широкий выбор электродвигателей данного типа, приобрести который вы можете по ценам, которые ощутимо выгоднее, чем у конкурентов.

Устройство и принцип действия

Как уже говорилось ранее, конструкция асинхронного двигателя достаточно проста — это ротор, или вращающаяся часть, и статор — неподвижная обмотка, внутри которой и создаются электромагнитные импульсы. Снаружи статор может иметь цельную либо сваренную оболочку из чугуна, алюминия, или его сплава, которая работает как радиатор охлаждения в процессе эксплуатации.

Принцип действия АД таков: напряжение, поступая на обмотки, создает магнитное поле. И т.к. угол сдвига фаз в асинхронном двигателе составляет 120 градусов, то поле, вырабатываемое ими, является вращающимся. Оно-то и создает крутящий момент, проходя через обмотки ротора. По сути, смысл работы тот же, что и у синхронных агрегатов, но тут не требуется создания на статоре дополнительного поля в виде магнитов.

Принцип работы и устройство синхронного электродвигателя переменного тока

Данный вид электродвигателя используется в быту там, где необходима постоянная скорость вращения, возможность ее регулировки, а так же если необходима скорость вращения более 3000 оборотов в минуту (это максимум для асинхронных).

Синхронные моторы устанавливаются в электроинструменте, пылесосе, стиральной машине и т. д.

В корпусе синхронного двигателя переменного тока расположены обмотки (3 на рисунке), которые также намотаны и на ротор или якорь (1). Их выводы припаяны к секторам токосъемного кольца или коллектора (5), на которые при помощи графитовых щеток (4) подается напряжение. При чем выводы расположены так, что щетки всегда подают напряжение только на одну пару.

Наиболее частыми поломками коллекторных двигателей является:

  1. Износ щетокили их плохой их контакт из-за ослабления прижимной пружины.
  2. Загрязнение коллектора.Чистите либо спиртом или нулевой наждачной бумагой.
  3. Износ подшипников.

Принцип работы. Вращающий момент в электромоторе создается в результате взаимодействия между током тока якоря и магнитным потоком в обмотке возбуждения. С изменением направления переменного тока будет меняться и направление магнитного потока одновременно в корпусе и якоре, благодаря чему вращение всегда будет в одну сторону.

Регулировка скорости вращения меняется методом изменения величины подаваемого напряжения. В дрелях и пылесосах для этого используется реостат или переменное сопротивление.

Изменение направления вращения происходит также как и у двигателей постоянного тока, о которых Я расскажу в следующей статье.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector