Aklaypart.ru

Авто Журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Чертежи турбореактивный двигатель своими руками

Как сделать реактивный двигатель своими руками

Самый простым реактивным двигателем является бесклапанный пульсирующий агрегат. После его изобретения стало очевидно, что он может двигать ракету даже в безвоздушном пространстве. Из-за того, что повсеместно стали использовать турбореактивные моторы, разработку рассматриваемого вида движителей приостановили. Но многие любители продолжают интересоваться, изучать и даже самостоятельно собирать агрегат. Попробуем сделать реактивный двигатель своими руками.

Типы реактивных двигателей.

Реактивные двигатели делятся на два класса:

  • Ракетные двигатели – имеют на борту все компоненты горючей смеси, включая окислитель. Приспособлены для работы в любой среде, в том числе безвоздушной.
  • Воздушно-реактивные двигатели – используют в качестве окислителя кислород, содержащийся в атмосфере.

Ракетные двигатели бывают твердотопливными и жидкостными.

Воздушно-реактивные двигатели подразделяются на пульсирующие, турбореактивные, турбовинтовые, турбовальные (вертолетные газотурбинные), прямоточные и гиперзвуковые прямоточные.

Конструкция установки

Чтобы успешно эксплуатировать авто на дровах или сжигать полученное топливо в котле, одного газогенератора недостаточно. Дело в том, что помимо балластных газов, самодельное горючее содержит летучие примеси и смолы, проще говоря, — дым и сажу. Ни автомобильный мотор, ни горелочное устройство котла не рассчитано на такое топливо и быстро выйдет из строя. Поэтому была придумана система фильтрования, входящая в состав газогенераторной установки и включающая 3 дополнительных агрегата:

  • фильтр грубой очистки – циклон;
  • радиатор – охладитель;
  • фильтр тонкой очистки.

Очередность размещения этих элементов показана на технологической схеме:

Циклон для газогенератора представляет собой вертикальный цилиндр с двумя патрубками и конусом на конце, как показано на чертеже. Загрязненная газовая смесь, попадая внутрь него, движется по кругу на высокой скорости, за счет чего крупные и средние частицы золы отбрасываются на стенки центробежной силой и выводятся через отверстие в конусе.

Схема работы циклона, который очищает силовой газ от примесей

Чем выше температура газа, тем меньше его плотность. Это значит, что горючее на выходе из газгена нельзя использовать в ДВС без предварительного охлаждения, иначе оно просто не воспламенится в цилиндрах. Поэтому в промышленных газогенераторных установках сразу после циклона ставится воздушный либо водяной теплообменник, а следом – компрессор, нагнетающий охлажденную газовую смесь в распределительную емкость.

В конце технологической цепочки стоит фильтр тонкой очистки, удаляющий из полученного топлива мелкие частицы сажи и золы. Пример такого агрегата – так называемый скруббер, в котором газы очищаются за счет продувания через воду. Теперь, когда мы разобрались с технологией производства горючего, можно сделать собственную недорогую установку, способную обеспечить работу двигателя внутреннего сгорания на дровах.

Самодельный газген, изготовленный заграничными коллегами

АЛ-31: технический бестселлер ХХ века

В начале 1970-х годов Архип Люлька обратился к реализации своего давнего изобретения – схемы двухконтурного ТРД со смешением потоков, авторское свидетельство на которое он получил еще в 1941 году. Сейчас по этой схеме строится абсолютное большинство турбореактивных двигателей в мире.

И вот в 1973 году Архип Люлька начал строить свой уникальный двухконтурный двигатель АЛ-31Ф. Этот двигатель четвертого поколения был установлен на фронтовой истребитель Су-27 разработки ОКБ Сухого.

АЛ-31Ф заслуженно признан вершиной творчества Архипа Михайловича. По оценке современников, лучший отечественный двигатель был установлен на лучший самолет, на котором с 1986 по 1988 год было установлено более 30 мировых рекордов. А в июне 1989 года в Ле Бурже на самолете Су-27 с двигателями АЛ-31Ф показана совершенно новая фигура высшего пилотажа – Кобра Пугачева.

Двигатель АЛ-31Ф и сегодня признан одним из лучших двигателей мира для самолетов фронтовой авиации. Он устанавливается на истребители Су-27 и его модификации, палубные истребители Су-33, многоцелевые истребители Су-35, Су-30МК, фронтовые бомбардировщики Су-34. Уникальный АЛ-31Ф можно без преувеличения назвать вечным двигателем для фронтовой авиации, или базовым, как называют его конструкторы, которые видят немалые резервы его развития.

Читать еще:  Что такое экран двигателя bmw

«ОДК-Сатурн» продолжил работы по созданию глубоко модернизированной версии АЛ-31Ф. На истребителе пятого поколения Су-57 были установлены двигатели первого этапа – АЛ-41Ф1 (изделие 117). Этот авиационный турбореактивный двухконтурный двигатель позволяет развивать сверхзвуковую скорость без использования форсажа.

В рамках программы Су-57 разрабатывается двигатель второго этапа под условным обозначением «тип 30». Первый полет истребителя пятого поколения с «Изделием 30» состоялся 5 декабря 2017 года. Считается, что в дальнейшем этот двигатель может по традиции получить индекс АЛ – Архип Люлька.

Дело генерального конструктора продолжается, и уже, как говорится, на новых современных рельсах. Сегодня на предприятиях ОДК при создании двигателей активно используются новые информационные и технологические возможности. Корпорации удалось не только модернизировать производство, но и сохранить школу, традиции и наследие великого конструктора. Как-то в своем выступлении сам Архип Михайлович заметил: «Прошло много лет с начала работ над турбореактивными двигателями в Советском Союзе, а я и сейчас не вижу предела их возможностей. В ближайшие годы нам предстоит решить ряд очень интересных и сложных задач по созданию новых поколений двигателей. И то, что они будут решены, у меня нет никаких сомнений. Ведь был же когда-то решен основной вопрос развития нашей авиации – создание отечественного турбореактивного двигателя!»

Как построить водометный двигатель для лодки самостоятельно?

Наилучший вариант водометного двигателя получается при использовании лодочного мотора «Ветерок 12», как базового. Это связано с тем, что этот двигатель обеспечен необходимым ассортиментом запасных частей. Их не проблематично приобрести на городском рынке или через Интернет.

После модернизации обычного лодочного мотора, общий вес водомета увеличится всего лишь на 1 кг, что совсем не существенно для лодки любого типа.

Рабочий водомет способен разогнать лодку водоизмещением в 450 кг до 20-25 км/час, на что не способен подвесной лодочный мотор аналогичной мощности.

Для модернизации обычного лодочного мотора потребуются следующие детали:

  • Лодочный мотор «Ветерок 12» со специальным фланцем.
  • Редуктор.
  • Развертки водосборника.
  • Аппарат для сварки.
  • Ступица.
  • Специальный клей (водостойкий).
  • Штуцеры.
  • Схема двигателя (чертеж).

Подготовительные операции

Подготовительную работу следует проводить ответственно и внимательно, иначе можно запросто вывести мотор из строя. Не следует прибегать к использованию ненадежных материалов, кроме тех, что соответствуют всем требованиям.

Изготовление

В конструкции водосборника предусмотрено углубление, которое обеспечивает для лодки необходимую маневренность и проходимость, а также уменьшает гидродинамическое сопротивление. Это осуществляется за счет того, что верхняя передняя кромка находится на 35 мм ниже уровня днища.

Для сборки мотора своими силами необходимо иметь обычный редуктор, который фиксируется на двигателе с помощью специального фланца. После этого нужно взять заготовку из металла, на которой рисуется развертка обечайки, водосборника и шести лопастей.

Чтобы сделать заготовки необходимой формы применяется напильник и гибочные вальцы. Несмотря на это, их можно сделать и вручную, с применением оправки. После этого приступают к сварочным работам для сваривания продольных и поперечных швов водоотвода и камеры водомета, имеющих различную форму.

В конструкции водомета имеется в наличии ступица, расположенная на бобышке изделия.

Водомет в собранном виде достигает массы 20 кг. При этом, чертеж подобного водомета встречается крайне редко. Но это не означает, что такую конструкцию невозможно изготовить самому. Если обратиться к Интернету, то здесь можно найти любой чертеж, выбрав подходящий вариант из огромного множества. Главное, что лодка с водометным двигателем имеет гораздо лучшие эксплуатационные характеристики.

Содержание

Ключевые характеристики ТРД следующие.

1. Создаваемая двигателем тяга.

2. Удельный расход топлива. (Масса топлива потребляемая за единицу времени для создания единицы тяги/мощности)

3. Расход воздуха. (Масса воздуха проходящего через каждое из сечений двигателя за единицу времени)

Читать еще:  Чип тюнинг двигателя форд дизель

4. Степень повышения полного давления в компрессоре

5. Температура газа на выходе из камеры сгорания.

6. Масса и габариты.

Степень повышения полного давления в компрессоре является одним из важнейших параметров ТРД, поскольку от него зависит эффективный КПД двигателя. Если у первых образцов ТРД (Jumo-004) этот показатель составлял 3, то у современных он достигает 40 (General Electric GE90). Для повышения газодинамической устойчивости компрессоров они выполняются двухкаскадными. Каждый из каскадов работает со своей скоростью вращения и приводится в движение своей турбиной. При этом вал 1-го каскада компрессора (низкого давления), вращаемого последней (самой низкооборотной) турбиной, проходит внутри полого вала компрессора второго каскада (высокого давления). Каскады двигателя также именуют роторами низкого и высокого давления.

Камера сгорания большинства ТРД имеет кольцевую форму и вал турбина-компрессор проходит внутри кольца камеры. При поступлении в камеру сгорания воздух разделяется на 3 потока.

Первичный воздух — поступает через фронтальные отверстия в камере сгорания, тормозится перед форсунками и принимает непосредственное участие в формировании топливно-воздушной смеси. Непосредственно участвует в сгорании топлива. Топливо-воздушная смесь в зоне сгорания топлива в ВРД по своему составу близка к стехиометрической.

Вторичный воздух — поступает через боковые отверстия в средней части стенок камеры сгорания и служит для их охлаждения путём создания потока воздуха с гораздо более низкой температурой, чем в зоне горения.

Третичный воздух — поступает через специальные воздушные каналы в выходной части стенок камеры сгорания и служит для выравнивания поля температур рабочего тела перед турбиной.

Из камеры сгорания нагретое рабочее тело поступает на турбину, расширяется, приводя её в движение и отдавая ей часть своей энергии, а после неё расширяется в сопле и истекает из него, создавая реактивную тягу.

Благодаря компрессору ТРД (в отличие от ПВРД) может «трогать с места» и работать при низких скоростях полёта, что для двигателя самолёта является совершенно необходимым, при этом давление в тракте двигателя и расход воздуха обеспечиваются только за счёт компрессора.

При повышении скорости полёта давление в камере сгорания и расход рабочего тела растут за счёт роста напора встречного потока воздуха, который затормаживается во входном устройстве (так же, как в ПВРД) и поступает на вход низшего каскада компрессора под давлением более высоким, чем атмосферное, при этом повышается и тяга двигателя.

Диапазон скоростей, в котором ТРД эффективен, смещён в сторону меньших значений, по сравнению с ПВРД. Агрегат «турбина-компрессор», позволяющий создавать большой расход и высокую степень сжатия рабочего тела в области низких и средних скоростей полёта, является препятствием на пути повышения эффективности двигателя в зоне высоких скоростей:

  • Температура, которую может выдерживать турбина, ограничена, что накладывает ограничение на количество тепловой энергии, подводимой к рабочему телу в камере сгорания, а это ведёт к уменьшению работы, производимой им при расширении.

Повышение допустимой температуры рабочего тела на входе в турбину является одним из главных направлений совершенствования ТРД. Если для первых ТРД эта температура едва достигала 1000 К, то в современных двигателях она приближается к 2000 К. Это обеспечивается как за счёт применения особо жаропрочных материалов, из которых изготовляются лопатки и диски турбин, так и за счёт организации их охлаждения: воздух из средних ступеней компрессора (гораздо более холодный, чем продукты сгорания топлива) подается на турбину и проходит сквозь сложные каналы внутри турбинных лопаток.

  • Турбина поглощает часть энергии рабочего тела перед поступлением его в сопло.

В результате максимальная скорость истечения реактивной струи у ТРД меньше, чем у ПВРД, что в соответствии с формулой для реактивной тяги ВРД [1]

, (1)

где — сила тяги,
— секундный расход массы рабочего тела через двигатель,
— скорость истечения реактивной струи (относительно двигателя),
— скорость полёта,
ограничивает сверху диапазон скоростей, на которых ТРД эффективен, значениями 2,5—3М. На этих и более высоких скоростях полёта торможение встречного потока воздуха создаёт степень повышения давления, измеряемую десятками единиц, такую же, или даже более высокую, чем у высоконапорных компрессоров, и ещё бо́льшее сжатие становится нежелательным, так как воздух при этом нагревается, а это ограничивает количество тепла, которое можно сообщить ему в камере сгорания. Таким образом, на высоких скоростях полёта (при M>3) агрегат турбина-компрессор становится бесполезным, и даже контрпродуктивным, поскольку только создаёт дополнительное сопротивление в тракте двигателя, и в этих условиях более эффективными становятся прямоточные воздушно-реактивные двигатели.

Читать еще:  Чем снять храповик двигателя 402

Форсажная камера

Хотя в ТРД имеет место избыток кислорода в камере сгорания, этот резерв мощности не удаётся реализовать напрямую — увеличением расхода горючего в камере — из-за ограничения температуры рабочего тела, поступающего на турбину. Этот резерв используется в двигателях, оборудованных форсажной камерой, расположенной между турбиной и соплом. В режиме форсажа в этой камере сжигается дополнительное количество горючего, внутренняя энергия рабочего тела перед расширением в сопле повышается, в результате чего скорость его истечения возрастает, и тяга двигателя увеличивается, в некоторых случаях, более, чем в 1,5 раза, что используется боевыми самолётами при полетах на высоких скоростях. При форсаже значительно повышается расход топлива, ТРД с форсажной камерой практически не нашли применения в коммерческой авиации, за исключением самолётов Ту-144 и Конкорд, полеты которых уже прекратились.

Гибридный ТРД / ПВРД

В 1960-х годах в США был создан гибридный ТРД / ПВРД Pratt & Whitney J58, использовавшийся на стратегическом разведчике SR-71 Blackbird. До скорости М=2,4 он работал как ТРД с форсажем, а на более высоких скоростях открывались каналы, по которым воздух из входного устройства поступал в форсажную камеру, минуя компрессор, камеру сгорания и турбину, подача топлива в форсажную камеру увеличивалась, и она начинала работать, как ПВРД. Такая схема работы позволяла расширить скоростной диапазон эффективной работы двигателя до М=3,2. В то же время двигатель уступал по весовым характеристикам как ТРД, так и ПВРД, и широкого распространения этот опыт не получил.

Регулируемые сопла

ТРД, скорость истечения реактивной струи в которых может быть как дозвуковой, так и сверхзвуковой на различных режимах работы двигателей, оборудуются регулируемыми соплами. Эти сопла состоят из продольных элементов, называемых створками, подвижных относительно друг друга и приводимых в движение специальным приводом, позволяющим по команде пилота или автоматической системы управления двигателем изменять геометрию сопла. При этом изменяются размеры критического (самого узкого) и выходного сечений сопла, что позволяет оптимизировать работу двигателя при полётах на разных скоростях и режимах работы двигателя.[1]

Область применения

ТРД наиболее активно развивались в качестве двигателей для всевозможных военных и коммерческих самолётов до 70-80-х годов XX века. В настоящее время ТРД потеряли значительную часть своей ниши в авиастроении, будучи вытесненными более экономичными двухконтурными ТРД (ТРДД).

    Образцы летательных аппаратов, оборудованных ТРД

Прямоточные воздушно-реактивные двигатели

Эта разновидность двигателей функционирует таким образом, что не нуждается в подвижных деталях. Воздушные массы нагнетаются в камеру сгорания непринужденным путем, благодаря торможению потоков об обтекатели входных отверстий. В дальнейшем совершается все то же, что и в обыкновенных реактивных двигателях, а именно воздушные потоки смешиваются с топливом и выходят как реактивные струи из сопел. Прямоточные воздушно-реактивные двигатели применяются в поездах, в воздушных суднах, в «беспилотниках», в ракетах, кроме того они могут устанавливаться на велосипеды или скутеры.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector