Чему равен момент инерции двигателя - Авто Журнал
Aklaypart.ru

Авто Журнал
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Чему равен момент инерции двигателя

Момент инерции для чайников: определение, формулы, примеры решения задач

Часто мы слышим выражения: «он инертный», «двигаться по инерции», «момент инерции». В переносном значении слово «инерция» может трактоваться как отсутствие инициативы и действий. Нас же интересует прямое значение.

Ежедневная рассылка с полезной информацией для студентов всех направлений – на нашем телеграм-канале.

Инерция, кинетическая энергия, работа

Приведем другой пример. Представь тяжелоатлета… Даже двух, которые решили поставить мировой рекорд и сдвинуть самолет. Им придется приложить немало сил, чтобы вначале разогнать самолет от нуля до некоторой скорости, а потом поддерживать эту скорость, преодолевая силу трения, направленную назад. Конечно, проще сдвинуть с места (преодолеть инерцию покоя) и разогнать до большой скорости тело меньшей массы, например, футбольный мяч. Инертность самолета во много раз больше инертности футбольного мяча.

А к какому трюку прибегает фокусник, чтобы в случае со скатертью все предметы остались на столе? Правильно, нужно выдернуть скатерть за наименьшее время. Чем меньше время, тем меньше энергии перейдет с силой трения на предметы и они просто не успеют разогнаться.

Трюк со скатертью

Энергия движущегося тела называется кинетической энергией и измеряется в Джоулях. Если тело неподвижно, кинетическая энергия равна нулю.

Чтобы разогнать тело массой m до нужной скорости V из состояния покоя (например, самолет), нужно выполнить работу, равную кинетической энергии разогнанного тела (без учета разных потерь):

Работа по изменению кинетической энергии тела совершается за счет приложения к нему некоторой силы – силы тяжести, силы трения, силы воздействия на него другого тела (тяжелоатлета-силача, дующего ветра, реактивной тяги ракетного двигателя и пр.).

Пусть силач разогнал до 0.1 м/с (10 сантиметров в секунду) легковую машину массой 1200 кг и самолет Ил-76 массой 88 500 кг в космосе (не будем учитывать силу трения). Тогда для преодоления инерции этих тел ему пришлось сжечь мышечной энергии на 6 Дж и 442,5 Дж соответсвенно. Т.е. на преодоление инерции покоя у самолета у спортсмена уйдет в 74 раза больше энергии, чем на автомобиль.

Чтобы остановить тело массой m, движущееся со скоростью V, нужно совершить обратную работу, равную отрицательному значению кинетической энергии этого тела:

Т.е. чем больше скорость тела и его масса, тем больше энергии на преодоление инерции движения надо затратить.

Если выключить мотор, машина под действием силы трения ее движущихся частей друг о друга, силы трения о воздух корпуса и силы трения колес об асфальт остановится сама. Но остановить машину можно и быстрее, увеличив силу трения с помощью тормозных дисков, т.е. выжав педаль тормоза.

При равной скорости масса грузовика намного больше, а значит больше его кинетическая энергия. Двигаясь накатом грузовик остановится дальше, чем легковой автомобиль – его инертность выше. Кстати, можно ли остановить грузовик быстрее легкового автомобиля и при каких условиях?

Метод маятниковых колебаний

Ротор машины крепят проволокой к куску угловой стали так, чтоб вершину уголка можно было использовать в качестве призмы, относительно которой ротор электромашины смог бы выполнять колебания. После чего оба конца полученного таким образом маятника опирают на металлические горизонтальные опоры так, чтоб ротор мог относительно точек опоры совершать колебания. Момент его инерции относительно оси, совпадающей с вершиной уголка, при пренебрежении инерцией последнего будет равен:

Где: G – это вес ротора машины в кг;

е – расстояние между осью ротора и осью качания, измеряется в м;

Т – период одного колебания в сек.

Зная JN, определяют по общему правилу инерцию ротора относительно оси, проходящей через центр тяжести:

Виды моментов инерции

Кроме безразмерного момента инерции, в физике существуют понятия:

  • центробежный МИ;
  • главный МИ;
  • геометрический МИ;
  • МИ относительно плоскости;
  • центральный МИ;
  • тензор инерции;
  • эллипсоид инерции.

Центробежными МИ относительно прямоугольных осей координат (декартовой системы) считаются Jxy, Jxz, Jyz. Ось ОХ является главной, когда центробежные моменты инерций Jxy и Jxz равняются нулям.

Читать еще:  Акб для запуска двигателя зимой

Любая точка тела может являться центром трех главных осей инерции. Они характеризуются взаимной перпендикулярностью. МИ относительно них считается главным для данного предмета. Главные оси, которые пролегают через центр масс, — являются главными центральными осями инерции предмета. МИ относительно них – главные центральные МИ. Для однородного тела ось симметрии всегда является главной центральной осью инерции.

Для геометрических МИ существуют формулы, основывающиеся на объеме относительно оси и площади относительно оси.

Твердое тело может иметь МИ относительно плоскости. Тогда это – скалярная величина, которая рассчитывается суммированием произведений массы каждой точки предмета и расстояния от нее до плоскости, возведенного в квадрат.

Понятие «Центрального МИ» связано с точкой О, МИ относительно полюса либо полярным МИ.

Обычный зубчатый редуктор (цилиндрический, конический и проч.) включает в себя две и более передаточные ступени для изменения угловой скорости и крутящего момента между входным и выходным валами. Редуктор является важным инструментом управления инерцией, позволяя снижать ее значение на квадрат передаточного отношения. Обратный эффект работы редуктора — снижение скорости вращения двигателя. Правда, большинство электродвигателей вращаются со скоростью 2000 — 6000 об/мин, и это позволяет им работать на полезной скорости даже при использовании с редуктором, имеющим высокие передаточные числа.

В стандартных механических приводах обычно используются зубчатые редукторы с прямозубыми и косозубыми шестернями. Прямозубые зубчатые колеса создают минимальную осевую нагрузку, снижая проблемы с вращением подшипников. Косозубые шестерни широко используются в роботизированных системах, поскольку имеют увеличенную площадь контакта, обеспечивающую более высокий предельный крутящий момент. Их главный недостаток — повышенная осевая нагрузка.

Величина I для тела произвольной формы

В случае, если геометрические размеры вращающегося тела незначительно отличаются от радиуса r, тогда следует принимать во внимание форму тела. С учетом названного фактора рассчитывают момент инерции с использованием следующей формулы:

По сути, это равенство является суммой моментов инерций всех материальных точек, которые образуют тело. При проведении практических вычислений, записанной формулой пользуются в несколько ином виде, который представлен ниже:

Как видно, интегрирование по массе m заменяется на интегрирование по объему V. Здесь греческой буквой ρ обозначена плотность. Если тело является однородным, то ρ будет постоянной величиной, которую можно вынести за знак интеграла. Если же масса неоднородно распределена по телу, то плотность будет функцией параметра r. Записанную формулу удобно использовать при определении I разных тел, потому что расчет выполняется с помощью мысленного деления тела на элементарные объемы dV.

Результаты применения записанного выше равенства для геометрических тел идеальной формы, например, для сферы, цилиндра или стержня, собраны в соответствующие таблицы. В чем измеряется момент инерции? Ниже на рисунке приводятся величины I для некоторых тел. Как видим, все формулы линейно зависят от массы тел и от квадрата геометрического параметра.

В спорте

Часто, уменьшив или увеличив момент инерции, можно улучшить показатели в спорте. Высокий момент инерции поддерживает постоянную скорость вращения или помогает сохранить равновесие, даже если скорость равна нулю. Если скорость равна нулю, то человек или предмет просто не вращается. Малый момент инерции, наоборот, позволяет легко изменить скорость вращения. То есть, уменьшение момента инерции уменьшает количество энергии, необходимой для того, чтобы увеличить или уменьшить скорость вращения. Момент инерции настолько важен в спорте, что некоторые исследователи считают, что для упражнений, в которых используется несколько снарядов или спортивного инвентаря одинакового веса, но разных конфигураций, следует подбирать снаряды и инвентарь с близким моментом инерции. Это практикуется, например, в гольфе: некоторые считают, что если использовать клюшки с одинаковым моментом инерции, то это поможет спортсмену улучшить свинг, то есть основной удар по мячу. В других видах спорта спортсмены иногда, наоборот, выбирают инвентарь с разным моментом инерции, в зависимости от того, какого эффекта они хотят добиться, например как быстро им необходимо ударить мяч клюшкой, или битой. Некоторые используют спортивный инвентарь с высоким моментом инерции, чтобы увеличить силу и выносливость мышц, не добавляя веса к снаряду. Так, например, момент инерции бейсбольной биты влияет на то, какую скорость она придаст мячу.

Читать еще:  Чем снять налет с двигателя

Высокой момент инерции

В некоторых случаях, необходимо чтобы вращательное движение продолжалось и не останавливалось, несмотря на то, что силы, действующие на тело, противостоят этому движению. К примеру, гимнастам, танцорам, ныряльщикам или фигуристам, которые крутятся или переворачиваются на льду или в воздухе, необходимо продолжать это движение в течение определенного времени. Для этого они могут увеличить момент инерции, увеличив вес тела. Можно добиться этого, держа во время вращения грузы, которые потом отпускают или отбрасывают, когда такой большой момент инерции уже не нужен. Это не всегда целесообразно и может быть даже опасно, если груз отлетит не в ту сторону и нанесет повреждения или травмы. Два человека могут также взяться за руки во время вращения, соединив свой вес, а потом отпустить друг друга, когда им не нужно больше крутиться. Этот прием нередко используется в фигурном катании.

Вместо массы можно также увеличить радиус от центра вращения до точки, наиболее от него удаленной. Для этого можно вытянуть руки или ноги в стороны от туловища, или взять в руки длинный шест.

Спортсмену, например ныряльщику, может понадобиться увеличить момент инерции перед тем, как он входит в воду. Когда он крутится в воздухе и принимает правильное направление, он распрямляется, чтобы остановить вращение, и в то же время увеличить радиус и, соответственно, момент инерции. Таким образом, его нулевую скорость вращения труднее изменить, и спортсмен входит в воду под правильным углом. Такой прием используют также танцоры, гимнасты и фигуристы в время танцев и упражнений, чтобы после вращения в воздухе аккуратно приземлиться.

Как мы только что увидели, чем выше момент инерции — тем легче поддерживать постоянную скорость вращения, даже если она равна нулю, то есть тело находится в состоянии покоя. Это бывает нужно как для того, чтобы поддержать вращение, как и для поддержания равновесия в отсутствии вращения. Например, чтобы не упасть, акробаты, которые ходят по канату, часто держат в руках длинный шест, увеличивая тем самым радиус от центра вращения до самой отдаленной от него точки.

Момент инерции часто используют и в тяжелой атлетике. Вес дисков распределяется по штанге, чтобы обеспечить безопасность во время упражнений по поднятию штанги. Если вместо штанги поднимать предмет меньшего размера, но одинакового со штангой веса, например мешок с песком или гирю, то даже совсем небольшое смещение угла подъема может быть опасным. Если спортсмен толкает гирю вверх, но под углом, то она может начать вращаться вокруг своей оси. Большой вес и маленький радиус гири означает, что, по сравнению со штангой того же веса, ее намного легче начать вращать. Поэтому если она начнет вращаться вокруг своей оси, ее очень трудно остановить. Спортсмену легко потерять контроль над гирей и уронить ее. Это особенно опасно, если спортсмен поднимает гирю над головой стоя, или над грудью лежа. Даже если гиря не упадет, спортсмен может повредить кисти рук, пытаясь предотвратить вращение и падение. То же самое может произойти при упражнениях с особо тяжелой штангой, поэтому крепление дисков у штанг, предназначенных для упражнений с очень большим весом — подвижно. Диски прокручиваются вокруг своей оси во время подъема штанги, а сама штанга остается неподвижной. Штанги, предназначенные для Олимпийских игр, которые так и называются, олимпийскими штангами, имеют именно такую конструкцию.

Для обеспечения безопасности во время тренировок с гирями обычно смещают центр вращения как можно дальше от центра гири. Чаще всего новый центр вращения — на теле спортсмена, например в районе плеча. То есть, обычно гирю не вращают с помощью кисти руки или вокруг локтевого сустава. Ее, наоборот, качают из стороны в сторону или вверх и вниз вокруг туловища, иначе работа с ней опасна.

Читать еще:  Характеристики двигателя митсубиси 4g15

Низкий момент инерции

В спорте нередко бывает нужно увеличить или уменьшить скорость вращения, используя как можно меньше энергии. Для этого спортсмены выбирают снаряды и инвентарь с малым моментом инерции, или уменьшают момент инерции своего тела.

В некоторых случаях важен общий момент инерции тела спортсмена. В этой ситуации спортсмены прижимают руки и ноги к туловищу, чтобы уменьшить момент инерции во время вращения. Это позволяет им ускорить движение и вращаться быстрее. Такой прием используют в фигурном катании, нырянии, гимнастике и в танцах. Чтобы испытать на себе этот эффект не обязательно заниматься одним из этих видов спорта, достаточно просто сесть в офисное кресло, раскрутить сидение, выставив руки и ноги, а потом прижать руки и ноги к корпусу. При этом скорость вращения увеличится.

В других видах спорта вращается не все тело спортсмена, а только его часть, например рука битой или клюшкой для гольфа. В этом случае вес распределен по бите или клюшке так, чтобы увеличить момент инерции. Это важно также для мечей, как настоящих, так и деревянных мечей для тренировок в восточных единоборствах, да и для любых других снарядов, которые спортсмены крутят или вращают, включая мячи для боулинга. Момент инерции влияет также на то, каким тяжелым кажется инвентарь во время его использования и насколько много затрачивается энергии на изменение его скорости вращения. Чем меньше момент инерции — тем обычно легче кажется инвентарь, и тем быстрее его можно вращать. Это позволяет спортсмену больше времени наблюдать за противником перед тем, как начать движение. Иногда это дополнительное время дает преимущество в спортивных играх, так как спортсмен может быстрее реагировать на движения противника. За эти дополнительные секунды становится проще предсказать траекторию движения противника, или мяча, например в теннисе и бейсболе, и сделать более точный удар.

Следует помнить, что при одинаковой скорости вращения биты, та, у которой более высокий момент инерции передаст при ударе большую скорость мячу, хоть и вращать эту биту нужно с затратой большего количества энергии. Поэтому снаряд с низким моментом инерции не обязательно лучше — в некоторых случаях спортсмены, наоборот, отдают предпочтение снарядам с высоким моментом инерции. Такие снаряды развивают мышцы, что помогает, в свою очередь, ускорить реакцию.

На клюшках для гольфа и теннисных ракетках обычно указана информация об их моменте инерции, а на бейсбольных битах ее чаще всего не пишут. Почему это так — неизвестно, хотя вероятно это связано с маркетингом в спорте. В любом случае, если информации о моменте инерции спортивного снаряда нет, то стоит перед покупкой хорошо испробовать этот снаряд, и сравнить с несколькими другими, чтобы определить, подходит ли он вам для ваших целей.

Значение I для колеса со спицами

Момент инерции колеса можно определить, используя свойство аддитивности рассматриваемой величины. Для этого мысленно разберем колесо на отдельные части, которые представляют собой спицы и обод. Поскольку спица — это тонкий стержень, и ось ее вращения проходит через конец, то для нее справедлива формула, полученная в предыдущем пункте.

Что касается обода колеса, то его момент инерции аналогичен таковому для материальной точки, находящейся на расстоянии радиуса колеса и имеющей массу обода.

Складывая моменты инерции всех элементов, получаем:

Здесь mc и mo — массы спицы и обода, соответственно, n — число спиц. Если все спицы весят намного меньше обода, тогда момент инерции колеса будет равен:

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector