Aklaypart.ru

Авто Журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Чего состоит электро двигатель

Устройство и принцип работы электродвигателя

Электродвигатель – это электротехническое устройство для преобразования электрической энергии в механическую. Сегодня повсеместно применяются электромоторы в промышленности для привода различных станков и механизмов. В домашнем хозяйстве они установлены в стиральной машине, холодильнике, соковыжималке, кухонном комбайне, вентиляторах, электробритвах и т. п. Электродвигатели приводят в движение, подключенные к ней устройства и механизмы.

В этой статье Я расскажу о самых распространенных видах и принципах работы электрических двигателей переменного тока, широко используемых в гараже, в домашнем хозяйстве или мастерской.

Принцип преобразования энергии

Принцип работы электродвигателя любого типа заключается в использовании электромагнитной индукции, возникающей внутри устройства после подключения в сеть. Для того чтобы понять, как эта индукция создается и приводит элементы двигателя в движение, следует обратиться к школьному курсу физики, объясняющему поведение проводников в электромагнитном поле.

Итак, если мы погрузим проводник в виде обмотки, по которому движутся электрические заряды, в магнитное поле, он начнет вращаться вокруг своей оси. Это связано с тем, что заряды находятся под влиянием механической силы, изменяющей их положение на перпендикулярной магнитным силовым линиям плоскости. Можно сказать, что эта же сила действует на весь проводник.

Схема, представленная ниже, показывает токопроводящую рамку, находящуюся под напряжением, и два магнитных полюса, придающие ей вращательное движение.

Именно эта закономерность взаимодействия магнитного поля и токопроводящего контура с созданием электродвижущей силы лежит в основе функционирования электродвигателей всех типов. Для создания аналогичных условий в конструкцию устройства включают:

  • Ротор (обмотка) – подвижная часть машины, закрепленная на сердечнике и подшипниках вращения. Она исполняет роль токопроводящего вращательного контура.
  • Статор – неподвижный элемент, создающий магнитное поле, воздействующее на электрические заряды ротора.
  • Корпус статора. Оснащен посадочными гнездами с обоймами для подшипников ротора. Ротор размещается внутри статора.

Для представления конструкции электродвигателя можно создать принципиальную схему на основе предыдущей иллюстрации:

После включения данного устройства в сеть, по обмоткам ротора начинает идти ток, который под воздействием магнитного поля, возникающего на статоре, придает ротору вращение, передаваемое на крутящийся вал. Скорость вращения, мощность и другие рабочие показатели зависят от конструкции конкретного двигателя и параметров электрической сети.

История

Принцип преобразования электрической энергии в механическую энергию электромагнитным полем был продемонстрирован британским учёным Майклом Фарадеем в 1821 и состоял из свободно висящего провода, окунающегося в пул ртути. Постоянный магнит был установлен в середине пула ртути. Когда через провод пропускался ток, провод вращался вокруг магнита, показывая, что ток вызывал циклическое магнитное поле вокруг провода. Этот двигатель часто демонстрируется в школьных классах физики, вместо токсичной ртути используют рассол. Это — самый простой вид из класса электрических двигателей. Последующим усовершенствованием является Колесо Барлоу. Оно было демонстрационным устройством, непригодным в практических применениях из-за ограниченной мощности. Изобретатели стремились создать электродвигатель для производственных нужд. Они пытались заставить железный сердечник двигаться в поле электромагнита возвратно-поступательно, то есть так, как движется поршень в цилиндре паровой машины. Русский ученый Б. С. Якоби пошел иным путем. В 1834 г. он создал первый в мире практически пригодный электродвигатель с вращающимся якорем и опубликовал теоретическую работу «О применении электромагнетизма для приведения в движение машины». Б. С. Якоби писал, что его двигатель несложен и «дает непосредственно круговое движение, которого гораздо легче преобразовать в другие виды движения, чем возвратно-поступательное».

Вращательное движение якоря в двигателе Якоби происходило вследствие попеременного притяжения и отталкивания электромагнитов. Неподвижная группа U-образных электромагнитов питалась током непосредственно от гальванической батареи, причем направление тока в этих электромагнитах оставалось неизменным. Подвижная группа электромагнитов была подключена к батарее через коммутатор, с помощью которого направление тока в каждом электромагните изменялось раз за один оборот диска. Полярность электромагнитов при этом соответственно изменялась, а каждый из подвижных электромагнитов попеременного притягивался и отталкивался соответствующим неподвижным электромагнитом: вал двигателя начинал вращаться. Мощность такого двигателя составляла всего 15 Вт. Впоследствии Якоби довел мощность электродвигателя до 550 Вт. Этот двигатель был установлен сначала на лодке, а позже на железнодорожной платформе.

Читать еще:  Хонда фрв двигатель характеристики

13 сентября 1838 г. лодка с 12 пассажирами поплыла по Неве против течения со скоростью около 3 км/ч. Лодка была снабжена колесами с лопастями. Колеса приводились во вращение электрическим двигателем, который получал ток от батареи из 320 гальванических элементов. Так впервые электрический двигатель появился на судне.

Особенности работы электромоторов постоянного тока

Основной действующий принцип работы электродвигателя постоянного тока состоит в следующих процессах. К обмотке возбуждения, называемой также индукторной обмоткой, осуществляется подача постоянного тока. В результате, создается постоянное магнитное поле, используемое для возбуждения. В моторах с использованием постоянных магнитов, создание поля происходит под их воздействием.

Поступление постоянного тока происходит и в якорную обмотку. Здесь он попадает под влияние магнитного поля, созданного статором, создавая момент вращения. В результате такого воздействия, ротор совершает поворот на 90 градусов, затем его обмотки вновь коммутируются и вращающиеся движения продолжаются.

Двигатели, работающие на постоянном токе классифицируются в соответствии со способом возбуждения:

  • Независимое возбуждение. Обмотка возбуждения запитывается через независимый источник.
  • Параллельное возбуждение. Обмотка возбуждения в этом случае включается одновременно с питанием якорной обмотки.
  • Последовательное возбуждение. Включение обмотки возбуждения последовательно с якорной обмоткой.
  • Возбуждение смешанного типа. Такие двигатели оборудуются параллельной и последовательной обмотками.

Устройство и принцип работы мотора постоянного тока зависит от многих факторов. Если подключение выполнено напрямую, то во время пуска якорный ток многократно превышает номинальное значение. Для выравнивания этих величин в цепь с якорем устанавливается пусковое сопротивление, выполненное в виде реостата. Плавность в время пуска обеспечивается ступенчатой конструкцией этого устройства. На первом этапе оказываются включены все ступени и сопротивление достигает максимального значения.

По мере того как двигатель разгоняется, возникает сила, противоположная ЭДС. Она постепенно возрастает, а якорный ток снижается за счет последовательного выключения ступеней. Подача электроэнергии на якорь и обмотки возбуждения может быть отрегулирована тиристорными преобразователями, известными как приводы постоянного тока.

Сфера применения

Электродвигатели переменного тока широко используются практически во всех сферах. Ими оснащаются электростанции, их используют в автомобиле- и машиностроении, есть они и в домашней бытовой технике. Простота их конструкции, надежность, долговечность и высокий показатель КПД делает их практически универсальными.

Асинхронные двигатели нашли применение в приводных системах различных станков, машин, центрифуг, вентиляторов, компрессоров, а также бытовых приборов. Трехфазные асинхронные двигатели являются наиболее распространенными и востребованными. Синхронные двигатели используются не только в качестве силовых агрегатов, но и генераторов, а также для привода крупных установок, где важно контролировать скорость.

Урок 36 (дополнительный материал). Принцип действия электродвигателя. Электроизмерительные приборы

  • » onclick=»window.open(this.href,’win2′,’status=no,toolbar=no,scrollbars=yes,titlebar=no,menubar=no,resizable=yes,width=640,height=480,directories=no,location=no’); return false;» rel=»nofollow»> Печать
  • E-mail

Принцип действия электродвигателя.

Электродвигательэто просто устройство для эффективного преобразования электрической энергии в механическую.

В основе этого преобразования лежит магнетизм. В электродвигателях используются постоянные магниты и электромагниты, кроме того, используются магнитные свойства различных материалов, чтобы создавать эти удивительные устройства.

Существует несколько типов электродвигателей. Отметим два главных класса: AC и DC.

Электродвигатели класса AC (Alternating Current) требуют для работы источник переменного тока или напряжения (такой источник Вы можете найти в любой электрической розетке в доме).

Электродвигатели класса DC (Direct Current) требуют для работы источник постоянного тока или напряжения (такой источник Вы можете найти в любой батарейке).

Универсальные двигатели могут работать от источника любого типа.

Не только конструкция двигателей различна, различны способы контроля скорости и вращающего момента, хотя принцип преобразования энергии одинаков для всех типов.

Устройство и принцип работы простейшего электродвигателя.

В основе конструкции электрического двигателя лежит эффект, обнаруженный Майклом Фарадеем в 1821 году: что взаимодействие электрического тока и магнита может вызывать непрерывное вращение. Один из первых двигателей, нашедших практическое применение, был двигатель Бориса Семеновича Якоби (1801 –1874), приводивший в движение катер с 12 пассажирами на борту. Однако для широкого использования электродвигателя необходим был источник дешевой электроэнергии — электромагнитный генератор.

Принцип работы электродвигателя очень прост: вращение вызывается силами магнитного притяжения и отталкивания, действующими между полюсами подвижного электромагнита (ротора) и соответствующими полюсами внешнего магнитного поля, создаваемого неподвижным электромагнитом (или постоянным магнитом) — статором.

Читать еще:  Чем отличаются двигатель ямз 238

Вращающаяся часть электрической машины называется ротором (или якорем), а неподвижная — статором. В простом электродвигателе постоянного тока блок катушки служит ротором, а постоянный магнит — статором.

Сложность заключается в том, чтобы добиться непрерывного вращения двигателя. А для этого надо сделать так, чтобы полюс подвижного электромагнита, притянувшись к противоположному полюсу статора, автоматически менялся на противоположный — тогда ротор не замрет на месте, а повернется дальше — по инерции и под действием возникшего в этот момент отталкивания.

Для автоматического переключения полюсов ротора служит коллектор. Он представляет собой пару закрепленных на валу ротора пластин, к которым подключены обмотки ротора. Ток на эти пластины подается через токоснимающие контакты (щетки). При повороте ротора на 180° пластины меняются местами — это автоматически меняет направление тока и, следовательно, полюсы подвижного электромагнита. Так как одноименные полюсы взаимно отталкиваются, катушка продолжает вращаться, а ее полюсы притягиваются к соответствующим полюсам на другой стороне магнита.

Простейший электродвигатель

Простейший электродвигатель работает только на постоянном токе (от батарейки). Ток проходит по рамке, расположенной между полюсами постоянного магнита. Взаимодействие магнитных полей рамки с током и магнита заставляет рамку поворачиваться. После каждого полуоборота коллектор переключает контакты рамки, подходящие к батарейке, и поэтому рамка вращается.

В некоторых двигателях для создания магнитного поля вместо постоянного магнита служит электромагнит. Витки проволоки такого электромагнита называются обмоткой возбуждения.

Электродвигатели используются повсюду. Даже дома вы можете обнаружить огромное количество электродвигателей. Электродвигатели используются в часах, в вентиляторе микроволновой печи, в стиральной машине, в компьютерных вентиляторах, в кондиционере, в соковыжималке и т. д. и т. п. Ну а электродвигатели, применяемые в промышленности, можно перечислять бесконечно. Диапазон физических размеров – от размера со спичечную головку до размера локомотивного двигателя.

Показанный ниже промышленный электродвигатель работает и на постоянном, и на переменном токе. Его статор – это электромагнит, создающий магнитное поле. Обмотки двигателя поочередно подключаются через щетки к источнику питания. Одна за другой они поворачивают ротор на небольшой угол, и ротор непрерывно вращается.

Промышленный электродвигатель

Электроизмерительные приборы.

Электроизмерительные приборы — класс устройств, применяемых для измерения различных электрических величин.

Группа электромагнитных приборов является наиболее распространенной. Принцип их действия, использованный впервые еще Ф. Кольраушем в 1884 году, основан на перемещении подвижной железной части под влиянием магнитного потока, создаваемого катушкой, по которой пропускается ток. Практическое осуществление этого принципа отличается разнообразием.

Ориентирующее действие магнитного поля на контур с током используют в электроизмерительных приборах магнитоэлектрической системы – амперметрах, вольтметрах и др.

Устройство прибора магнитоэлектрической системы

Измерительный прибор магнитоэлектрической системы устроен следующим образом.

Берут лёгкую алюминиевую рамку 2 прямоугольной формы, наматывают на неё катушку из тонкого провода. Рамку крепят на двух полуосях О и О’, к которым прикреплена также стрелка прибора 4. Ось удерживается двумя тонкими спиральными пружинами 3. Силы упругости пружин, возвращающие рамку к положению равновесия в отсутствие тока, подобраны такими, чтобы были пропорциональными углу отклонения стрелки от положения равновесия. Катушку помещают между полюсами постоянного магнита М с наконечниками формы полого цилиндра. Внутри катушки располагают цилиндр 1 из мягкого железа. Такая конструкция обеспечивает радиальное направление линий магнитной индукции в области нахождения витков катушки (см рисунок).

В результате при любом положении катушки силы, действующие на нее со стороны магнитного поля, максимальны и при неизменной силе тока постоянны. Векторы F и –F изображают силы, действующие на катушку со стороны магнитного поля и поворачивающие ее. Катушка с током поворачивается до тех пор, пока силы упругости со стороны пружины не уравновесят силы, действующие на рамку со стороны магнитного поля. Увеличивая силу тока в рамке в 2 раза, рамка повернётся на угол, вдвое больший. Это происходит потому, что Fm

Силы, действующие на рамку с током прямо пропорциональны силе тока, то есть можно, проградуировав прибор, измерять силу тока в рамке.

Точно так же можно прибор настроить на измерение напряжения в цепи, если проградуировать шкалу в вольтах, причём сопротивление рамки с током должно быть выбрано очень большим по сравнению с сопротивлением участка цепи, на котором измеряем напряжение.

Читать еще:  406 двигатель разница в температуре

Дополнительные материалы.

2. Презентация «Электроизмерительные приборы» скачать с Яндекса

Типы двигателей переменного тока

Поскольку для электроснабжения объектов используется переменное напряжения одно и трехфазного тока, наибольшее распространение получили именно двигатели переменного тока. Они широко используются как в быту, так и для решения самых разнообразных промышленных задач. По типам конструкции и принципу действия выделяют такие типы электромоторов для работы с переменным током:

  • синхронные электромоторы;
  • индукционные или асинхронные электродвигатели, предназначенные для работы с одно и трехфазным током;
  • универсальные решения, работающие как на переменном, так и на постоянном токе.

Наибольшее распространение в промышленности получили именно индукционные асинхронные двигатели, благодаря простоте конструкции, минимальным требованиям к обслуживанию и широкому диапазону технических характеристик электродвигателей, которые позволяют решать самые разные задачи.

Главное отличие таких электромоторов от синхронных двигателей – это отсутствие необходимости подачи питания на ротор, электромагнитное поле в котором возбуждается вихревыми токами в короткозамкнутой конструкции.

До недавнего времени у таких электромоторов был один существенный недостаток – ограничение на частоту вращения ротора, связанное со стандартной частотой электропитающей сети. Также такие электромоторы без применения специальных электронных схем управления имеют такие недостатки, как:

  • значительный пусковой ток;
  • низкий крутящий момент на малых оборотах;
  • невозможность эффективно управлять частотой вращения;
  • необходимость перекоммутации обмоток для реверсивного запуска;
  • сложности с запуском в цепях однофазного тока, которые решаются использованием дополнительного пускового конденсатора или использованием дополнительной пусковой обмотки.

Таких недостатков лишен электродвигатель с фазным ротором, на котором размещаются обмотки с отдельным электропитанием, подводимом через токосъемные кольца. В свою очередь это приводит к повышению сложности изготовления таких моторов, увеличению их стоимости, а также наличию элементов токосъемника, которые требуют обслуживания.

Синхронные электромоторы переменного тока также лишены перечисленных недостатков асинхронных моторов, обладают высоким крутящим моментом и постоянной скоростью вращения при изменяемым характере нагрузки, отличаются высоким КПД и небольшим реактивным сопротивлением. Однако такие электромоторы имеют и ряд существенных недостатков:

  • относительная дороговизна конструкции;
  • сложная схема запуска;
  • наличие источника постоянного тока или выпрямителя для возбуждения электромагнитного поля;
  • ряд сложностей, связанных с регулировкой частоты вращения и крутящего момента.

Поэтому в последнее время все чаще можно встретить комбинацию использования асинхронных двигателей в связке с частотными преобразователями.

Применение преобразователя частоты, позволяющего управлять частотой и амплитудой питающего напряжения значительно расширяет область применения таких моторов, повышает их экономичность и точность управления. В таких системах появляется возможность:

  • запитать трехфазный двигатель даже от сети однофазного тока;
  • обеспечить оптимальный режим пуска, остановки;
  • управлять направлением вращения вала мотора;
  • обеспечить защиту электромотора от нестабильности напряжения, пропадания напряжения на фазе, короткого замыкания, аварийного превышения нагрузки;
  • значительно увеличить максимальную скорость вращения ротора по сравнению с работой при непосредственном подключении к сети переменного тока;
  • обеспечить автоматизацию поддержания заданного режима работы с высокой точностью.

В любом случае, чтобы обеспечить максимальную эффективность работы электромоторов для решения определенной задачи, необходимо учесть:

  • назначение электродвигателя и системы, в которой он используется;
  • особенности режима эксплуатации;
  • требования управляемости и автоматизации процесса;
  • стоимость реализации такого решения;
  • расходы на обслуживание.

Поэтому при разработке любой системы, как правило, сначала определяют технические требования к режимам работы электропривода, а затем на их основе выбирают оптимальный тип электромотора, использование которого будет рационально с точки зрения стоимости внедрения и затрат на эксплуатацию.

Учитывая многообразие решений как в области различных систем электропривода, так и в области управления работой двигателями, сделать оптимальный выбор могут только специалисты с опытом разработки и внедрения таких решений.

Поэтому, когда вам требуется спроектировать решение на основе электромотора, необходимо подобрать оптимальный тип электродвигателя и его системы управления. Наша компания занимается поставкой и внедрением систем управления работой электромоторов разного типа, назначения и мощности, поэтому вы всегда можете обратиться к нашим специалистам за помощью и консультацией в подборе решения, которое будет оптимально для вашей области применения.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector